A Characterization of Semilinear Dense Range Operators and Applications

被引:18
作者
Leiva, H. [1 ]
Merentes, N. [2 ]
Sanchez, J. [2 ]
机构
[1] Univ Los Andes, Fac Ciencias, Dept Matemat, Merida 5101, Venezuela
[2] Cent Univ Venezuela, Fac Ciencias, Dept Matemat, Caracas 1053, Venezuela
关键词
APPROXIMATE CONTROLLABILITY; EVOLUTION-EQUATIONS; HEAT-EQUATION; SYSTEMS;
D O I
10.1155/2013/729093
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize a broad class of semilinear dense range operators G(H) : W -> Zgiven by the following formula, G(H)w = Gw + H(w), w is an element of W, where Z, W are Hilbert spaces, G is an element of A(W, Z), and H : W -> Z is a suitable nonlinear operator. First, we give a necessary and sufficient condition for the linear operator.. to have dense range. Second, under some condition on the nonlinear term H, we prove the following statement: If Rang(G) =.., then Rang(G(H)) = Z and for all z subset of Zthere exists a sequence {w(alpha) subset of Z : 0 < alpha <= 1} given by w(alpha) = G*(alpha I + GG*)(-1) (z - H(w(alpha))), such that lim(alpha -> 0)+{Gu(alpha) + H(mu(alpha))} = z Finally, we apply this result to prove the approximate controllability of the following semilinear evolution equation: z' = Az + Bu(t) + F(t, z, u(t)), z is an element of Z, u is an element of U, t > 0, where Z, U are Hilbert spaces, A : D(A) subset of Z -> Z is the infinitesimal generator of strongly continuous compact semigroup {T(t)}(t >= 0) in Z, B is an element of L(U, Z), the control function.. belongs to L-2 (0, tau; U), and F : [0, tau] x Z x U -> Z is a suitable function. As a particular case we consider the controlled semilinear heat equation.
引用
收藏
页数:11
相关论文
共 28 条
[1]   Controllability of nonlinear fractional dynamical systems [J].
Balachandran, K. ;
Park, J. Y. ;
Trujillo, J. J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) :1919-1926
[2]   Controllability of Laguerre and Jacobi equations [J].
Barcenas, D. ;
Leiva, H. ;
Quintana, Y. ;
Urbina, W. .
INTERNATIONAL JOURNAL OF CONTROL, 2007, 80 (08) :1307-1315
[3]   A broad class of evolution equations are approximately controllable, but never exactly controllable [J].
Barcenas, Diomedes ;
Leiva, Hugo ;
Sivoli, Zoraida .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2005, 22 (03) :310-320
[4]   Controllability of the Ornstein-Uhlenbeck equation [J].
Barcenas, Diomedes ;
Leiva, Hugo ;
Urbina, Wilfredo .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2006, 23 (01) :1-9
[5]   On concepts of controllability for deterministic and stochastic systems [J].
Bashirov, AE ;
Mahmudov, NI .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (06) :1808-1821
[6]  
Curtain R. F., 1978, Infinite dimensional linear systems theory, DOI 10.1007/BFb0006761
[7]  
Curtain RF., 2012, INTRO INFINITE DIMEN
[8]   Controllability of some nonlinear systems in Hilbert spaces [J].
Dauer, JP ;
Mahmudov, NI .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2004, 123 (02) :319-329
[9]   Approximate controllability of semilinear functional equations in Hilbert spaces [J].
Dauer, JP ;
Mahmudov, NI .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 273 (02) :310-327
[10]   Approximate controllability of a semilinear heat equation in RN [J].
De Teresa, L .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (06) :2128-2147