Generation of substrate-free III-V nanodisks from user-defined multilayer nanopillar arrays for integration on Si

被引:9
作者
Naureen, S. [1 ]
Shahid, N. [1 ]
Dev, A. [1 ]
Anand, S. [1 ]
机构
[1] KTH Royal Inst Technol, Sch Informat & Commun Technol, SE-16440 Kista, Sweden
基金
瑞典研究理事会;
关键词
SILICON; GROWTH; GAAS; OPTOELECTRONICS; NANOLASERS; NANOWIRES; PHOTONICS; FILMS; INP;
D O I
10.1088/0957-4484/24/22/225301
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High material quality InP-based multilayer nanopillar (NP) arrays are fabricated using a combination of self-assembly of silica particles for mask generation and dry etching. In particular, the NP arrays are made from user-defined epitaxial multilayer stacks with specific materials and layer thicknesses. An additional degree of flexibility in the structures is obtained by changing the lateral diameters of the NP multilayer stacks. Pre-defined NP arrays made from InGaAsP/InP and InGaAs/InP NPs are then used to generate substrate-free nanodisks of a chosen material from the stack by selective etching. A soft-stamping method is demonstrated to transfer the generated nanodisks with arbitrary densities onto Si. The transferred nanodisks retain their smooth surface morphologies and their designed geometrical dimensions. Both InP and InGaAsP nanodisks display excellent photoluminescence properties, with line-widths comparable to unprocessed reference epitaxial layers of similar composition. The multilayer NP arrays are potentially attractive for broad-band absorption in third-generation solar cells. The high optical quality, substrate-free InP and InGaAsP nanodisks on Si offer a new path to explore alternative ways to integrate III-V on Si by bonding nanodisks to Si. The method also has the advantage of re-usable III-V substrates for subsequent layer growth.
引用
收藏
页数:8
相关论文
共 29 条
[1]  
[Anonymous], EUR C OPT COMM ECOC
[2]   Semiconductor wires and ribbons for high-performance flexible electronics [J].
Baca, Alfred J. ;
Ahn, Jong-Hyun ;
Sun, Yugang ;
Meitl, Matthew A. ;
Menard, Etienne ;
Kim, Hoon-Sik ;
Choi, Won Mook ;
Kim, Dae-Hyeong ;
Huang, Young ;
Rogers, John A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (30) :5524-5542
[3]   Vertical high-mobility wrap-gated InAs nanowire transistor [J].
Bryllert, T ;
Wernersson, LE ;
Fröberg, LE ;
Samuelson, L .
IEEE ELECTRON DEVICE LETTERS, 2006, 27 (05) :323-325
[4]   SURFACE CHARACTERIZATION OF INP USING PHOTOLUMINESCENCE [J].
CHANG, RR ;
IYER, R ;
LILE, DL .
JOURNAL OF APPLIED PHYSICS, 1987, 61 (05) :1995-2004
[5]  
Chen R, 2011, NAT PHOTONICS, V5, P170, DOI [10.1038/nphoton.2010.315, 10.1038/NPHOTON.2010.315]
[6]   III-V multijunction solar cells for concentrating photovoltaics [J].
Cotal, Hector ;
Fetzer, Chris ;
Boisvert, Joseph ;
Kinsey, Geoffrey ;
King, Richard ;
Hebert, Peter ;
Yoon, Hojun ;
Karam, Nasser .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (02) :174-192
[7]   Supercritical fluid-liquid-solid synthesis of gallium arsenide nanowires seeded by alkanethiol-stabilized gold nanocrystals [J].
Davidson, FM ;
Schricker, AD ;
Wiacek, RJ ;
Korgel, BA .
ADVANCED MATERIALS, 2004, 16 (07) :646-+
[8]  
Deelen J V, 1997, MAT SCI ENG B, V45, P162
[9]   Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices [J].
Duan, XF ;
Huang, Y ;
Cui, Y ;
Wang, JF ;
Lieber, CM .
NATURE, 2001, 409 (6816) :66-69
[10]   Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing [J].
Fan, Zhiyong ;
Ho, Johnny C. ;
Jacobson, Zachery A. ;
Yerushalmi, Roie ;
Alley, Robert L. ;
Razavi, Haleh ;
Javey, Ali .
NANO LETTERS, 2008, 8 (01) :20-25