NUMERICAL METHODS FOR DIVIDEND OPTIMIZATION USING REGIME-SWITCHING JUMP-DIFFUSION MODELS

被引:8
|
作者
Jin, Zhuo [1 ]
Yin, George [1 ]
Yang, Hailiang [2 ]
机构
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[2] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Jump diffusion; dividend policy; regime switching; stochastic control; STRATEGIES;
D O I
10.3934/mcrf.2011.1.21
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work develops numerical methods for finding optimal dividend policies to maximize the expected present value of dividend payout, where the surplus follows a regime-switching jump diffusion model and the switching is represented by a continuous-time Markov chain. To approximate the optimal dividend policies or optimal controls, we use Markov chain approximation techniques to construct a discrete-time controlled Markov chain with two components. Under simple conditions, we prove the convergence of the approximation sequence to the surplus process and the convergence of the approximation to the value function. Several examples are provided to demonstrate the performance of the algorithms.
引用
收藏
页码:21 / 40
页数:20
相关论文
共 50 条
  • [1] Option pricing under regime-switching jump-diffusion models
    Costabile, Massimo
    Leccadito, Arturo
    Massabo, Ivar
    Russo, Emilio
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 256 : 152 - 167
  • [2] Stability of numerical methods under the regime-switching jump-diffusion model with variable coefficients
    Lee, Sunju
    Lee, Younhee
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (05): : 1741 - 1762
  • [3] Numerical methods for optimal dividend payment and investment strategies of regime-switching jump diffusion models with capital injections
    Jin, Zhuo
    Yang, Hailiang
    Yin, G. George
    AUTOMATICA, 2013, 49 (08) : 2317 - 2329
  • [4] Optimal dividend payment strategies with debt constraint in a hybrid regime-switching jump-diffusion model
    Tan, Senren
    Jin, Zhuo
    Yin, G.
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2018, 27 : 141 - 156
  • [5] High-Order Methods for Exotic Options and Greeks Under Regime-Switching Jump-Diffusion Models
    Ma, Jingtang
    Wang, Han
    Zhou, Zhiqiang
    Tan, Zhijun
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2020, 13 (02): : 497 - 515
  • [6] Optimal stopping problem for jump-diffusion processes with regime-switching
    Shao, Jinghai
    Tian, Taoran
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2021, 41
  • [7] Numerical methods for controlled regime-switching diffusions and regime-switching jump diffusions
    Song, Q. S.
    Yin, G.
    Zhang, Z.
    AUTOMATICA, 2006, 42 (07) : 1147 - 1157
  • [8] NUMERICAL SCHEMES FOR OPTION PRICING IN REGIME-SWITCHING JUMP DIFFUSION MODELS
    Florescu, Ionut
    Liu, Ruihua
    Mariani, Maria Cristina
    Sewell, Granville
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2013, 16 (08)
  • [9] DIVIDEND OPTIMIZATION FOR A REGIME-SWITCHING DIFFUSION MODEL WITH RESTRICTED DIVIDEND RATES
    Zhu, Jinxia
    ASTIN BULLETIN, 2014, 44 (02): : 459 - 494
  • [10] DOUBLE BARRIER OPTIONS IN REGIME-SWITCHING HYPER-EXPONENTIAL JUMP-DIFFUSION MODELS
    Boyarchenko, Mitya
    Boyarchenko, Svetlana
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2011, 14 (07) : 1005 - 1043