C1,α convergence of minimizers of a Ginzburg-Landau functional

被引:0
|
作者
Lei, Yutian [1 ]
Wu, Zhuoqun [1 ]
机构
[1] Jilin Univ, Inst Math, Changchun 130023, Peoples R China
关键词
Ginzburg-Landau functional; regularizable minimizer;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study the minimizers of the functional E-s(u, G) = 1/p integral(G)vertical bar del u vertical bar(p) + 1/4 epsilon(p) integral(G) (1 - vertical bar u vertical bar(2))(2), on the class W-g = {v is an element of W-1,W-p(G, R-2); v vertical bar partial derivative G = g}, where g : partial derivative G -> S-1 is a smooth map with Brouwer degree zero, and p is greater than 2. In particular, we show that the minimizer converges to the p-harmonic map in C-loc(1,alpha)(G, R-2) as epsilon approaches zero.
引用
收藏
页数:20
相关论文
共 50 条