Max-plus algebra and max-plus linear discrete event systems: An introduction

被引:17
作者
De Schutter, Bart [1 ]
van den Boom, Ton [1 ]
机构
[1] Delft Univ Technol, Delft Ctr Syst & Control, NL-2628 CD Delft, Netherlands
来源
WODES' 08: PROCEEDINGS OF THE 9TH INTERNATIONAL WORKSHOP ON DISCRETE EVENT SYSTEMS | 2008年
关键词
MODEL-PREDICTIVE CONTROL; PERFORMANCE EVALUATION; DYNAMIC-SYSTEMS; BEHAVIOR; GRAPHS;
D O I
10.1109/WODES.2008.4605919
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We provide an introduction to the max-plus algebra and explain how it can be used to model a specific class of discrete event systems with synchronization but no concurrency. Such systems are called max-plus linear discrete event systems because they can be described by a model that is "linear" in the max-plus algebra. We discuss some key properties of the max-plus algebra and indicate how these properties can be used to analyze the behavior of max-plus linear discrete event systems. We also briefly present some control approaches for max-plus linear discrete event systems, including model predictive control. Finally, we discuss some extensions of the max-plus algebra and of max-plus linear systems.
引用
收藏
页码:36 / 42
页数:7
相关论文
共 49 条
[21]   On the equivalence of linear complementarity problems [J].
De Schutter, B ;
Heemels, WPMH ;
Bemporad, A .
OPERATIONS RESEARCH LETTERS, 2002, 30 (04) :211-222
[22]   Model predictive control for max-plus-linear discrete event systems [J].
De Schutter, B ;
van den Boom, T .
AUTOMATICA, 2001, 37 (07) :1049-1056
[23]   A method to find all solutions of a system of multivariate polynomial equalities and inequalities in the max algebra [J].
De Schutter, B ;
De Moor, B .
DISCRETE EVENT DYNAMIC SYSTEMS-THEORY AND APPLICATIONS, 1996, 6 (02) :115-138
[24]  
De Schutter B., 1996, THESIS KU LEUVEN LEU
[25]  
Gaubert, 1992, THESIS ECOLE NATL SU
[26]  
GAUBERT S, 1990, LECT NOTES CONTR INF, V144, P957
[27]   PERFORMANCE EVALUATION OF (MAX,+) AUTOMATA [J].
GAUBERT, S .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (12) :2014-2025
[28]   Minimal (max,+) realization of convex sequences [J].
Gaubert, S ;
Butkovic, P ;
Cuninghame-Green, R .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (01) :137-147
[29]  
GAUBERT S, 1993, P 2 EUR CONTR C GRON, P2175
[30]  
Gaubert S., 1994, 2162 INRIA, V2162