Expression of glutamate transporters in rat optic nerve oligodendrocytes

被引:100
作者
Domercq, M [1 ]
Sánchez-Gómez, MV [1 ]
Areso, P [1 ]
Matute, C [1 ]
机构
[1] Univ Basque Country, Fac Med & Odontol, Dept Neurociencias, Leioa 48940, Vizcaya, Spain
关键词
axon-glia signalling; cell culture; glial transporters; glutamine synthetase;
D O I
10.1046/j.1460-9568.1999.00639.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
To investigate the role of glutamate transport in non-synaptic glia, we characterized the expression of three major glutamate transporters (EAAC1, GLAST and GLT-1) in rat optic nerve in situ using reverse transcription-polymerase chain reaction in combination with Western blot and immunochemistry with specific antibodies. GLAST was localized to interfascicular oligodendrocytes, whereas a subpopulation of cells, probably immature oligodendrocyte cells, expressed EAAC1. In contrast, astrocytes, expressed only GLT-1, consistent with the idea that this is the major glutamate transporter in this cell type. In addition, we observed that glutamine synthetase, a key enzyme in glutamate metabolism, was localized in oligodendrocytes in situ. To examine the properties of these glutamate transporters, we conducted uptake experiments in glial cultures. The kinetics of sodium-dependent glutamate uptake in cultured oligodendrocytes from the perinatal rat optic nerve were markedly different from those observed in type-1 astrocytes from the newborn rat cerebral cortex, with higher affinity and lower Vmax. In both cell types, glutamate transport was inhibited by L-trans-pyrrolidine-2,4-dicarboxylate (t-PDC). In contrast, dihydrokainate exhibited significantly more uptake inhibition in oligodendrocytes than in type-1 astrocytes. These results provide evidence for the expression of functional sodium-dependent glutamate transporters in optic nerve oligodendrocytes, and suggest that this cell type may play a role in the glutamate-glutamine cycle.
引用
收藏
页码:2226 / 2236
页数:11
相关论文
共 53 条
[1]  
ARRIZA JL, 1994, J NEUROSCI, V14, P5559
[2]   Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance [J].
Arriza, JL ;
Eliasof, S ;
Kavanaugh, MP ;
Amara, SG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (08) :4155-4160
[3]   CELL-DEATH AND CONTROL OF CELL-SURVIVAL IN THE OLIGODENDROCYTE LINEAGE [J].
BARRES, BA ;
HART, IK ;
COLES, HSR ;
BURNE, JF ;
VOYYODIC, JT ;
RICHARDSON, WD ;
RAFF, MC .
CELL, 1992, 70 (01) :31-46
[4]   Analysis of a sequenced cDNA library from multiple sclerosis lesions [J].
Becker, KG ;
Mattson, DH ;
Powers, JM ;
Gado, AM ;
Biddison, WE .
JOURNAL OF NEUROIMMUNOLOGY, 1997, 77 (01) :27-38
[5]   METABOLISM OF AMINO-ACIDS AND AMMONIA IN RAT-BRAIN CORTEX SLICES INVITRO - POSSIBLE ROLE OF AMMONIA IN BRAIN-FUNCTION [J].
BENJAMIN, AM ;
QUASTEL, JH .
JOURNAL OF NEUROCHEMISTRY, 1975, 25 (03) :197-206
[6]   LOCATIONS OF AMINO-ACIDS IN BRAIN SLICES FROM RAT - TETRODOTOXIN-SENSITIVE RELEASE OF AMINO-ACIDS [J].
BENJAMIN, AM ;
QUASTEL, JH .
BIOCHEMICAL JOURNAL, 1972, 128 (03) :631-&
[7]   GLUTAMATE TRANSPORTERS IN GLIAL PLASMA-MEMBRANES - HIGHLY DIFFERENTIATED LOCALIZATIONS REVEALED BY QUANTITATIVE ULTRASTRUCTURAL IMMUNOCYTOCHEMISTRY [J].
CHAUDHRY, FA ;
LEHRE, KP ;
CAMPAGNE, MV ;
OTTERSEN, OP ;
DANBOLT, NC ;
STORMMATHISEN, J .
NEURON, 1995, 15 (03) :711-720
[8]   EXCITOTOXIC CELL-DEATH [J].
CHOI, DW .
JOURNAL OF NEUROBIOLOGY, 1992, 23 (09) :1261-1276
[9]  
Choi I, 1997, GLIA, V20, P184, DOI 10.1002/(SICI)1098-1136(199707)20:3<184::AID-GLIA2>3.3.CO
[10]  
2-U