Grain Growth and the Puzzle of its Stagnation in Thin Films: A Detailed Comparison of Experiments and Simulations

被引:12
作者
Barmak, Katayun [1 ,2 ]
Eggeling, Eva [5 ]
Sharp, Richard [3 ,4 ]
Roberts, Scott [1 ,2 ]
Shyu, Terry [1 ,2 ]
Sun, Tik [6 ]
Yao, Bo [6 ]
Ta'asan, Shlomo [3 ,4 ]
Kinderlehrer, David [3 ,4 ]
Rollett, Anthony [1 ,2 ]
Coffey, Kevin [6 ]
机构
[1] Carnegie Mellon Univ, Mat Res Sci & Engn Ctr, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
[3] Carnegie Mellon Univ, Mat Res Sci & Engn Ctr, Pittsburgh, PA 15213 USA
[4] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[5] Fraunhofer Austria Res GmbH, A-8010 Graz, Austria
[6] Univ Cent Florida, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA
来源
RECRYSTALLIZATION AND GRAIN GROWTH IV | 2012年 / 715-716卷
基金
美国国家科学基金会;
关键词
Thin film grain growth; grain growth stagnation; grain growth simulation; isotropic and anisotropic grain boundary energy; grain boundary grooving; solute drag; triple junction drag; EVOLUTION;
D O I
10.4028/www.scientific.net/MSF.715-716.473
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We revisit grain growth and the puzzle of its stagnation in thin metallic films. We bring together a large body of experimental data that includes the size of more than 30,000 grains obtained from 23 thin film samples of Al and Cu with thicknesses in the range of 25 to 158 nm. In addition to grain size, a broad range of other metrics such as the number of sides and the average side class of nearest neighbors is used to compare the experimental results with the results of two dimensional simulations of grain growth with isotropic boundary energy. In order to identify the underlying cause of the differences between these simulations and experiments, five factors are examined. These are (i) surface energy and elastic strain energy reduction, (ii) anisotropy of grain boundary energy, and retarding and pinning forces such as (iii) solute drag, (iv) grain boundary grooving and (v) triple junction drag. No single factor provides an explanation for the observed experimental behavior.
引用
收藏
页码:473 / +
页数:3
相关论文
共 11 条
[1]  
Archibald W. A., 2005, THESIS
[2]   Grain boundary energy and grain growth in Al films: Comparison of experiments and simulations [J].
Barmak, K ;
Kim, J ;
Kim, CS ;
Archibald, WE ;
Rohrer, GS ;
Rollett, AD ;
Kinderlehrer, D ;
Ta'asan, S ;
Zhang, H ;
Srolovitz, DJ .
SCRIPTA MATERIALIA, 2006, 54 (06) :1059-1063
[3]   A methodology for automated quantitative microstructural analysis of transmission electron micrographs [J].
Carpenter, DT ;
Rickman, JM ;
Barmak, K .
JOURNAL OF APPLIED PHYSICS, 1998, 84 (11) :5843-5854
[4]   SIMULATION OF THIN-FILM GRAIN STRUCTURES .1. GRAIN-GROWTH STAGNATION [J].
FROST, HJ ;
THOMPSON, CV ;
WALTON, DT .
ACTA METALLURGICA ET MATERIALIA, 1990, 38 (08) :1455-1462
[5]  
GORDON P, 1965, T METALL SOC AIME, V233, P391
[6]   A variational approach to modeling and simulation of grain growth [J].
Kinderlehrer, David ;
Livshits, Irene ;
Ta'Asan, Shlomo .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (05) :1694-1715
[7]   THEORY OF THERMAL GROOVING [J].
MULLINS, WW .
JOURNAL OF APPLIED PHYSICS, 1957, 28 (03) :333-339
[8]   Simulation of the influence of particles on grain structure evolution in two-dimensional systems and thin films [J].
Riege, SP ;
Thompson, CV ;
Frost, HJ .
ACTA MATERIALIA, 1999, 47 (06) :1879-1887
[9]   Dominant role of grain boundary scattering in the resistivity of nanometric Cu films [J].
Sun, Tik ;
Yao, Bo ;
Warren, Andrew P. ;
Barmak, Katayun ;
Toney, Michael F. ;
Peale, Robert E. ;
Coffey, Kevin R. .
PHYSICAL REVIEW B, 2009, 79 (04)
[10]   Grain growth and evolution of other cellular structures [J].
Thompson, CV .
SOLID STATE PHYSICS: ADVANCES IN RESEARCH AND APPLICATIONS, VOL 55, 2001, 55 :269-314