On the spherically symmetric Einstein-Yang-Mills-Higgs equations in Bondi coordinates

被引:2
作者
Tadmon, Calvin [1 ,2 ]
Tchapnda, Sophonie Blaise [3 ]
机构
[1] Univ Dschang, Dept Math & Comp Sci, Dschang, Cameroon
[2] Univ Pretoria, Dept Math & Appl Math, ZA-0002 Pretoria, South Africa
[3] Univ Yaounde I, Dept Math, Yaounde, Cameroon
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2012年 / 468卷 / 2146期
关键词
global solution; Einstein-Yang-Mills-Higgs equations; spherical symmetry; Bondi coordinates; 4-DIMENSIONAL MINKOWSKI SPACE; ZERO-ORDER STRUCTURE; GLOBAL EXISTENCE; WORMHOLE SOLUTIONS; COUPLED EINSTEIN; BLACK-HOLES; SYSTEM; FIELDS;
D O I
10.1098/rspa.2012.0171
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We revisit and generalize, to the Einstein-Yang-Mills-Higgs (EYMH) system, previous results of Christodoulou and Chae concerning global solutions for the Einstein-scalar field and the Einstein-Maxwell-Higgs (EMH) equations. The novelty of the present work is twofold. For one thing, the assumption on the self-interaction potential is improved. For another thing, explanation is furnished why the solutions obtained here and those proved by Chae for the EMH system decay more slowly than those established by Christodoulou in the case of self-gravitating scalar fields. Actually, this latter phenomenon stems from the non-vanishing local charge in EMH and EYMH models.
引用
收藏
页码:3191 / 3214
页数:24
相关论文
共 28 条
[1]   PARTICLE-LIKE SOLUTIONS OF THE EINSTEIN-YANG-MILLS EQUATIONS [J].
BARTNIK, R ;
MCKINNON, J .
PHYSICAL REVIEW LETTERS, 1988, 61 (02) :141-144
[2]   Static cosmological solutions of the Einstein-Yang-Mills-Higgs equations [J].
Breitenlohner, P ;
Forgács, P ;
Maison, D .
PHYSICS LETTERS B, 2000, 489 (3-4) :397-402
[3]   Gravitating (bi-)sphalerons [J].
Brihaye, Y ;
Desoil, R .
MODERN PHYSICS LETTERS A, 2000, 15 (14) :889-900
[4]   Global existence of solutions to the coupled Einstein and Maxwell-Higgs system in the spherical symmetry [J].
Chae, D .
ANNALES HENRI POINCARE, 2003, 4 (01) :35-62
[5]   Global existence of spherically symmetric solutions to the coupled Einstein and nonlinear Klein-Gordon system [J].
Chae, DH .
CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (21) :4589-4605
[6]  
Choquet-Bruhat Y., 1991, MEM SOC MATH FRANCE, V46, P73
[7]   THE PROBLEM OF A SELF-GRAVITATING SCALAR FIELD [J].
CHRISTODOULOU, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 105 (03) :337-361
[8]   EINSTEIN-YANG-MILLS-HIGGS SOLITONS [J].
CLEMENT, G .
GENERAL RELATIVITY AND GRAVITATION, 1981, 13 (08) :763-770
[9]   CANONICAL FORMULATION OF SPHERICALLY SYMMETRIC EINSTEIN-YANG-MILLS-HIGGS SYSTEM FOR A GENERAL GAUGE GROUP [J].
CORDERO, P .
ANNALS OF PHYSICS, 1977, 108 (01) :79-98
[10]   SPONTANEOUS COMPACTIFICATION OF SPACE IN AN EINSTEIN-YANG-MILLS-HIGGS MODEL [J].
CREMMER, E ;
SCHERK, J .
NUCLEAR PHYSICS B, 1976, 108 (03) :409-416