The Nonlinear Singularly Perturbed Nonlocal Reaction Diffusion Systems

被引:1
作者
Mo, Jia-qi [1 ]
Chen, Xiu [2 ]
机构
[1] Anhui Normal Univ, Dept Math, Wuhu 241000, Peoples R China
[2] Hefei Univ, Dept Math & Phys, Hefei 230601, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Reaction diffusion system; singular perturbation; initial boundary value problem;
D O I
10.1007/s10255-004-4129-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the singularly perturbed initial boundary value problems for a nonlocal reaction diffusion system are considered. Using the iteration method and the comparison theorem, the existence and asymptotic behavior of solutions for the problem are studied.
引用
收藏
页码:553 / 562
页数:10
相关论文
共 18 条
[1]   Beyond-all-orders effects in multiple-scales asymptotics: travelling-wave solutions to the Kuramoto-Sivashinsky equation [J].
Adams, KL ;
King, JR ;
Tew, RH .
JOURNAL OF ENGINEERING MATHEMATICS, 2003, 45 (3-4) :197-226
[2]   Singular perturbation of N-front travelling waves in the Fitzhugh-Nagumo equations [J].
Bell, DC ;
Deng, B .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2002, 3 (04) :515-541
[3]   Singularly perturbed elliptic problems in the case of exchange of stabilities [J].
Butuzov, VF ;
Nefedov, NN ;
Schneider, KR .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 169 (02) :373-395
[4]  
de Jager EM, 1966, THEORY SINGULAR PERT
[5]  
HAMOUDA M, 2002, APPL ANAL, V81, P837
[6]   A singular perturbation problem of Carrier and Pearson [J].
Kelley, WG .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 255 (02) :678-697
[7]  
[Mo Jiaqi 莫嘉琪], 2002, [生物数学学报, Journal of Biomathematics], V17, P143
[8]  
Mo Jiaqi, 1999, Systems Science and Mathematical Science, V12, P55
[9]  
Mo JQ, 2002, PROG NAT SCI, V12, P945
[10]   A class of nonlocal boundary value problems of nonlinear elliptic systems in unbounded domains [J].
Mo, JQ ;
Ouyang, C .
ACTA MATHEMATICA SCIENTIA, 2001, 21 (01) :93-97