Congruences for Hecke eigenvalues of Siegel modular forms

被引:6
作者
Katsurada, H. [2 ]
Mizumoto, S. [1 ]
机构
[1] Tokyo Inst Technol, Dept Math, Meguro Ku, Tokyo 1528551, Japan
[2] Muroran Inst Technol, Muroran, Hokkaido 0508585, Japan
来源
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG | 2012年 / 82卷 / 02期
关键词
Siegel modular forms; Hecke eigenvalues; Congruences; FOURIER-JACOBI DEVELOPMENT; STANDARD ZETA-FUNCTIONS; ELLIPTIC CUSP FORMS; EISENSTEIN SERIES; SPECIAL VALUES; EXPLICIT FORMULA; DIRICHLET SERIES; COEFFICIENTS; DEGREE-2; OPERATORS;
D O I
10.1007/s12188-012-0069-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove some congruences for Hecke eigenvalues of Klingen-Eisenstein series and those of cusp forms for Siegel modular groups modulo special values of automorphic L-functions.
引用
收藏
页码:129 / 152
页数:24
相关论文
共 49 条
[1]  
Andrianov A. N., 1987, GRUNDL MATH WISS, V286
[2]   ANALYTIC PROPERTIES OF STANDARD ZETA-FUNCTIONS OF SIEGEL MODULAR-FORMS [J].
ANDRIANOV, AN ;
KALININ, VL .
MATHEMATICS OF THE USSR-SBORNIK, 1979, 35 (01) :1-17
[3]   THE FOURIER-JACOBI DEVELOPMENT OF SIEGEL EISENSTEIN SERIES [J].
BOCHERER, S .
MATHEMATISCHE ZEITSCHRIFT, 1983, 183 (01) :21-46
[4]   THE FOURIER COEFFICIENTS OF SIEGEL EINSTEIN SERIES [J].
BOCHERER, S .
MANUSCRIPTA MATHEMATICA, 1984, 45 (03) :273-288
[5]  
BOCHERER S, 1985, J REINE ANGEW MATH, V362, P146
[6]   THE FOURIER-JACOBI DEVELOPMENT OF THE SIEGEL EISENSTEIN SERIES-II [J].
BOCHERER, S .
MATHEMATISCHE ZEITSCHRIFT, 1985, 189 (01) :81-110
[7]   Symmetric square L-functions and Shafarevich-Tate groups [J].
Dummigan, N .
EXPERIMENTAL MATHEMATICS, 2001, 10 (03) :383-400
[8]  
EICHLER M, 1985, PROG MATH, V55
[9]  
Garrett P., 1984, PROG MATH, P114
[10]  
HARRIS M, 1981, ANN SCI ECOLE NORM S, V14, P77