Controllability of non-densely defined functional differential systems in abstract space

被引:24
作者
Fu, XL [1 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
controllability; non-densely defined; integral solution; Schauder fixed point theorem;
D O I
10.1016/j.aml.2005.04.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, with the Schauder fixed point theorem applied, we establish a result concerning the controllability for a class of abstract functional differential systems where the linear part is non-densely defined and satisfies the Hille-Yosida condition. As an application, an example is provided to illustrate the result obtained. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:369 / 377
页数:9
相关论文
共 15 条
[1]   Controllability of Sobolev-type semilinear integrodifferential systems in Banach spaces [J].
Balachandran, K ;
Sakthivel, R .
APPLIED MATHEMATICS LETTERS, 1999, 12 (07) :63-71
[2]   Local null controllability of nonlinear functional differential systems in Banach space [J].
Balachandran, K ;
Balasubramaniam, P ;
Dauer, JP .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 88 (01) :61-75
[3]  
CHUCKWU EN, 1991, J OPTIM THEORY APPL, V68, P437
[4]   Controllability of neutral functional differential systems in abstract space [J].
Fu, XL .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 141 (2-3) :281-296
[5]   INTEGRATED SEMIGROUPS [J].
KELLERMAN, H ;
HIEBER, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 84 (01) :160-180
[6]  
Kwun Y.C., 1991, B KOREAN MATH SOC, V28, P131
[7]   EXACT CONTROLLABILITY OF SEMILINEAR ABSTRACT SYSTEMS WITH APPLICATION TO WAVES AND PLATES BOUNDARY CONTROL-PROBLEMS [J].
LASIECKA, I ;
TRIGGIANI, R .
APPLIED MATHEMATICS AND OPTIMIZATION, 1991, 23 (02) :109-154
[8]   APPROXIMATE CONTROLLABILITY FOR TRAJECTORIES OF A DELAY VOLTERRA CONTROL-SYSTEM [J].
NAITO, K ;
PARK, JY .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1989, 61 (02) :271-279
[10]  
NAKAGIRI S, 1989, INT J CONTROL, V49, P1489, DOI 10.1080/00207178908961331