Comparing histogram data using a Mahalanobis-Wasserstein distance

被引:22
作者
Verde, Rosanna [1 ]
Irpino, Antonio [1 ]
机构
[1] Univ Naples 2, Dept European & Mediterranean Studies, I-81100 Caserta, Italy
来源
COMPSTAT 2008: PROCEEDINGS IN COMPUTATIONAL STATISTICS | 2008年
关键词
histogram data; Wasserstein distance; Mahalanobis distance; inertia; dependence; dynamic clustering;
D O I
10.1007/978-3-7908-2084-3_7
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we present a new distance for comparing data described by histograms. The distance is a generalization of the classical Mahalanobis distance for data described by correlated variables. We define a way to extend the classical concept of inertia and codeviance from a set of points to a set of data described by histograms. The same results are also presented for data described by continuous density functions (empiric or estimated). An application to real data is performed to illustrate the effects of the new distance using dynamic clustering.
引用
收藏
页码:77 / 89
页数:13
相关论文
共 13 条
[1]  
[Anonymous], 2007, Selected Contributions in Data Analysis and Classification
[2]  
Bertrand P, 2000, ST CLASS DAT ANAL, P106
[3]  
Billard L., 2007, Selected Contributions in Data Analysis and Classification, P3
[4]  
BOCK HH, 2000, STUDIES CLASSIFICATI
[5]  
Brito P., 2007, SELECTED CONTRIBUTIO, P13
[6]  
CHAVENT M, 2003, REV STAT APPL, V4, P5
[7]   Optimal transportation plans and convergence in distribution [J].
CuestaAlbertos, JA ;
Matran, C ;
TueroDiaz, A .
JOURNAL OF MULTIVARIATE ANALYSIS, 1997, 60 (01) :72-83
[8]  
Diday E., 1976, Digital pattern recognition, P47
[9]  
Diday E., 1971, REVUE STATISTIQUE AP, V19, P19
[10]   On choosing and bounding probability metrics [J].
Gibbs, AL ;
Su, FE .
INTERNATIONAL STATISTICAL REVIEW, 2002, 70 (03) :419-435