A Comprehensive Flexible Spatiotemporal DAta Fusion Method (CFSDAF) for Generating High Spatiotemporal Resolution Land Surface Temperature in Urban Area

被引:13
作者
Shi, Chenlie [1 ,2 ]
Wang, Ninglian [1 ,2 ,3 ]
Zhang, Quan [1 ,2 ]
Liu, Zhuang [4 ,5 ]
Zhu, Xinming [6 ]
机构
[1] Northwest Univ, Coll Urban & Environm Sci, Shaanxi Key Lab Earth Surface Syst & Environm Carr, Xian 710127, Peoples R China
[2] Northwest Univ, Inst Earth Surface Syst & Hazards, Coll Urban & Environm Sci, Xian 710127, Peoples R China
[3] Chinese Acad Sci, Inst Tibetan Plateau Res, Beijing 100101, Peoples R China
[4] State Key Lab Geoinformat Engn, Xian 710127, Peoples R China
[5] Xian Res Inst Surveying & Mapping, Xian 710127, Peoples R China
[6] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Comprehensive flexible spatiotemporal data fusion (CFSDAF); flexible spatiotemporal data fusion (FSDAF); landsat; land surface temperature (LST); MODIS; spatiotemporal fusion; SPLIT-WINDOW ALGORITHM; HEAT-ISLAND; TEMPORAL RESOLUTION; REFLECTANCE FUSION; MODIS; SATELLITE; RETRIEVAL; SCALE; DISAGGREGATION; GEOSTATIONARY;
D O I
10.1109/JSTARS.2022.3220897
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Spatiotemporal fusion of land surface temperature (LST) has a vital significance in studying the temporal and spatial variation of urban heat islands. But most existing LST fusion methods do not consider the highly heterogeneous urban surface and complexity of the spatial layout. In this study, a Comprehensive Flexible Spatiotemporal DAta Fusion (CFSDAF) method was proposed to generate a high spatiotemporal resolution urban LST image, which was an improvement of the Flexible Spatiotemporal DAta Fusion (FSDAF). The CFSDAF first adjusted the differences between coarse-resolution LST and fine-resolution LST. Then, the visible and near-infrared image of a fine resolution was introduced to execute spectral unmixing and to conduct soft classification, which considered the mixed pixel of fine-resolution LST. The inverse distance weighting (IDW) interpolation was used in improving the computational efficiency, and the constrained least square was selected to better distribute the residual. The performance of CFSDAF was compared with the temporal adaptive reflectance fusion model (STARFM) and FSDAF. The results indicate that the predicted images by CFSDAF are better than STARFM and FSDAF from both visual comparison and quantitative assessment in two experiments, and CFSDAF can reserve more spatial details and accurately restore the spatial continuity of urban LST than others. Moreover, CFSDAF has high computational efficiency and can monitor land cover changes the same as FSDAF. Due to the above advantages, the CFSDAF has great potential for studying spatiotemporal changes of LST and UHI in an urban area.
引用
收藏
页码:9885 / 9899
页数:15
相关论文
共 83 条
[1]   A vegetation index based technique for spatial sharpening of thermal imagery [J].
Agam, Nurit ;
Kustas, William P. ;
Anderson, Martha C. ;
Li, Fuqin ;
Neale, Christopher M. U. .
REMOTE SENSING OF ENVIRONMENT, 2007, 107 (04) :545-558
[2]   Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery [J].
Anderson, M. C. ;
Kustas, W. P. ;
Norman, J. M. ;
Hain, C. R. ;
Mecikalski, J. R. ;
Schultz, L. ;
Gonzalez-Dugo, M. P. ;
Cammalleri, C. ;
d'Urso, G. ;
Pimstein, A. ;
Gao, F. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2011, 15 (01) :223-239
[3]  
Anderson M.C., 2010, Hydrology and Earth Syststems Sciences Discusssion, V7, P5957, DOI [DOI 10.5194/HESSD-7-5957-2010, 10.5194/hessd-7-5957-2010]
[4]   Advancing of Land Surface Temperature Retrieval Using Extreme Learning Machine and Spatio-Temporal Adaptive Data Fusion Algorithm [J].
Bai, Yang ;
Wong, Man Sing ;
Shi, Wen-Zhong ;
Wu, Li-Xin ;
Qin, Kai .
REMOTE SENSING, 2015, 7 (04) :4424-4441
[5]   Downscaling Land Surface Temperature from MODIS Dataset with Random Forest Approach over Alpine Vegetated Areas [J].
Bartkowiak, Paulina ;
Castelli, Mariapina ;
Notarnicola, Claudia .
REMOTE SENSING, 2019, 11 (11)
[6]   Development and verification of a non-linear disaggregation method (NL-DisTrad) to downscale MODIS land surface temperature to the spatial scale of Landsat thermal data to estimate evapotranspiration [J].
Bindhu, V. M. ;
Narasimhan, B. ;
Sudheer, K. P. .
REMOTE SENSING OF ENVIRONMENT, 2013, 135 :118-129
[7]   Comparison of Spatiotemporal Fusion Models: A Review [J].
Chen, Bin ;
Huang, Bo ;
Xu, Bing .
REMOTE SENSING, 2015, 7 (02) :1798-1835
[8]   Generating the 30-m land surface temperature product over continental China and USA from landsat 5/7/8 data [J].
Cheng, Jie ;
Meng, Xiangchen ;
Dong, Shengyue ;
Liang, Shunlin .
SCIENCE OF REMOTE SENSING, 2021, 4
[9]   Validation of Collection 6 MODIS land surface temperature product using in situ measurements [J].
Duan, Si-Bo ;
Li, Zhao-Liang ;
Li, Hua ;
Goettsche, Frank-M ;
Wu, Hua ;
Zhao, Wei ;
Leng, Pei ;
Zhang, Xia ;
Coll, Cesar .
REMOTE SENSING OF ENVIRONMENT, 2019, 225 :16-29