Riesz exponential families on symmetric cones

被引:46
作者
Hassairi, A [1 ]
Lajmi, S [1 ]
机构
[1] Sfax Univ, Fac Sci, Sfax, Tunisia
关键词
Jordan algebra; symmetric cone; triangular group; exponential family; variance function;
D O I
10.1023/A:1012592618872
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let E be a simple Euclidean Jordan algebra of rank r and let Omega be its symmetric cone. Given a Jordan frame on E, the generalized power defined on -Omega is the Laplace transform of some positive measure R-s on E if and only if s is in a given subset Xi of R'. The aim of this paper is to study the natural exponential families (NEFs) F(R-s) associated to the measures R-s. We give a condition on s so that R-s generates a NEF, we calculate the variance function of F(R-s) and we show that a NEF F on E is invariant by the triangular group if and only if there exists s in Xi such that either F = F(R-s) or F is the image of F(R-s) under the map x --> - x.
引用
收藏
页码:927 / 948
页数:22
相关论文
共 12 条
[1]  
Casalis M, 1996, ANN STAT, V24, P1828
[2]  
CASALIS M, 1991, CR ACAD SCI I-MATH, V312, P537
[3]  
Faraut J., 1994, Analysis on symmetric cones
[4]  
FARAUT J, 1998, ALGEBRES JORDAN CONE
[5]  
Gindikin S-G, 1964, RUSS MATH SURV, V29, P1
[6]  
HASSAIRI A, 1992, CR ACAD SCI I-MATH, V315, P207
[7]  
HASSAIRI A, 1993, CR ACAD SCI I-MATH, V217, P887
[8]  
KANEYUKI S, 1998, P JAPAN ACAD, V64, P311
[9]  
LAJMI, 1998, THESIS TUNIS U
[10]   NATURAL REAL EXPONENTIAL-FAMILIES WITH CUBIC VARIANCE FUNCTIONS [J].
LETAC, G ;
MORA, M .
ANNALS OF STATISTICS, 1990, 18 (01) :1-37