Parabolic equations with p, q-growth

被引:59
作者
Boegelein, Verena [1 ]
Duzaar, Frank [1 ]
Marcellini, Paolo [2 ]
机构
[1] Univ Erlangen Nurnberg, Dept Math, D-91058 Erlangen, Germany
[2] Univ Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2013年 / 100卷 / 04期
关键词
Parabolic equations; Nonstandard p; q-growth; Existence; Regularity; ELLIPTIC-EQUATIONS; REGULARITY; MINIMIZERS; EXISTENCE; GRADIENT; SYSTEMS;
D O I
10.1016/j.matpur.2013.01.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider parabolic equations of the type partial derivative(t)u - div a(x, t, Du) = 0 on a parabolic space time cylinder Omega(T). The vector field a is assumed to satisfy a non-standard p, q-growth assumption. When 2 <= p <= q < p + 4/n it is established that any weak solution u is an element of L-P (0, T; W-1,W-P (Omega)) boolean AND L-loc(q) (0, T;W-loc(1,q)(Omega)) admits a locally bounded spatial gradient Du. Moreover, it is shown that the stronger assumption 2 <= p <= q < p + 4/n+2 guarantees an existence result for the Cauchy-Dirichlet problem associated to the parabolic equation from above. The results cover for example equations of the type partial derivative(t)u - Sigma n=1 partial derivative/partial derivative(xi) ((mu(2) + vertical bar D(i)u vertical bar(2))(pi-2/2) D(i)u) = 0 with mu is an element of [0, 1] and suitable growth exponents p(i). We emphasize that the results include the degenerate case mu = 0. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:535 / 563
页数:29
相关论文
共 26 条
[21]  
Mkrtychyan P.Z., 1989, J CONTEMP MATH ANAL, V24, P293
[22]   Regularity theorems for degenerate quasiconvex energies with (p, q)-growth [J].
Schmidt, Thomas .
ADVANCES IN CALCULUS OF VARIATIONS, 2008, 1 (03) :241-270
[23]   Regularity of Relaxed Minimizers of Quasiconvex Variational Integrals with (p, q)-growth [J].
Schmidt, Thomas .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2009, 193 (02) :311-337
[24]   Boundedness of the gradient for a doubly nonlinear parabolic equation [J].
Siljander, Juhana .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (01) :158-167
[25]   COMPACT-SETS IN THE SPACE LP(O, T-B) [J].
SIMON, J .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1986, 146 :65-96
[26]  
You JS, 1998, ACTA MATH SIN, V14, P145