Parabolic equations with p, q-growth

被引:59
作者
Boegelein, Verena [1 ]
Duzaar, Frank [1 ]
Marcellini, Paolo [2 ]
机构
[1] Univ Erlangen Nurnberg, Dept Math, D-91058 Erlangen, Germany
[2] Univ Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2013年 / 100卷 / 04期
关键词
Parabolic equations; Nonstandard p; q-growth; Existence; Regularity; ELLIPTIC-EQUATIONS; REGULARITY; MINIMIZERS; EXISTENCE; GRADIENT; SYSTEMS;
D O I
10.1016/j.matpur.2013.01.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider parabolic equations of the type partial derivative(t)u - div a(x, t, Du) = 0 on a parabolic space time cylinder Omega(T). The vector field a is assumed to satisfy a non-standard p, q-growth assumption. When 2 <= p <= q < p + 4/n it is established that any weak solution u is an element of L-P (0, T; W-1,W-P (Omega)) boolean AND L-loc(q) (0, T;W-loc(1,q)(Omega)) admits a locally bounded spatial gradient Du. Moreover, it is shown that the stronger assumption 2 <= p <= q < p + 4/n+2 guarantees an existence result for the Cauchy-Dirichlet problem associated to the parabolic equation from above. The results cover for example equations of the type partial derivative(t)u - Sigma n=1 partial derivative/partial derivative(xi) ((mu(2) + vertical bar D(i)u vertical bar(2))(pi-2/2) D(i)u) = 0 with mu is an element of [0, 1] and suitable growth exponents p(i). We emphasize that the results include the degenerate case mu = 0. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:535 / 563
页数:29
相关论文
共 26 条
[1]   Regularity results for parabolic systems related to a class of non-Newtonian fluids [J].
Acerbi, E ;
Mingione, G ;
Seregin, GA .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (01) :25-60
[2]  
[Anonymous], 2003, DIRECT METHODS CALCU, DOI DOI 10.1142/5002
[3]  
[Anonymous], 1993, DEGENERATE PARABOLIC, DOI DOI 10.1007/978-1-4612-0895-2
[4]  
[Anonymous], 1994, Ann. Scuola Norm. Sup. Pisa Cl. Sci.
[5]  
Bildhauer M, 2007, ANN SCUOLA NORM-SCI, V6, P385
[6]   The regularity of general parabolic systems with degenerate diffusion [J].
Boegelein, Verena ;
Duzaar, Frank ;
Mingione, Giuseppe .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 221 (1041) :1-143
[7]   Existence and uniqueness of weak solutions for a non-uniformly parabolic equation [J].
Cai, Yongyong ;
Zhou, Shulin .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (10) :3021-3042
[8]   Higher differentiability of minimizers of convex variational integrals [J].
Carozza, Menita ;
Kristensen, Jan ;
di Napoli, Antonia Passarelli .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (03) :395-411
[9]   REGULARITY UNDER SHARP ANISOTROPIC GENERAL GROWTH CONDITIONS [J].
Cupini, Giovanni ;
Marcellini, Paolo ;
Mascolo, Elvira .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 11 (01) :67-86
[10]  
DIBENEDETTO E, 1984, J REINE ANGEW MATH, V349, P83