A Jacobi-Davidson-type projection method for nonlinear eigenvalue problems

被引:68
作者
Betcke, T
Voss, H [1 ]
机构
[1] Tech Univ Hamburg, Dept Math, D-21071 Hamburg, Germany
[2] Univ Oxford, Comp Lab, Oxford OX1 3QD, England
来源
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE | 2004年 / 20卷 / 03期
关键词
nonlinear eigenvalue problem; Jacobi-Davidson method; projection method; Rayleigh functional; minmax characterization;
D O I
10.1016/j.future.2003.07.003
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper discusses a projection method for nonlinear eigenvalue problems. The subspace of approximants is constructed by a Jacobi-Davidson-type approach, and the arising eigenproblems of small dimension are solved by safeguarded iteration. The method is applied to a rational eigenvalue problem governing the vibrations of tube bundle immersed in an inviscid compressible fluid. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:363 / 372
页数:10
相关论文
共 14 条
[1]  
BAI Z, 2000, QUADRATIC EIGENVALUE, P281
[2]  
Bai Z., 2000, TEMPLATES SOLUTION A, DOI DOI 10.1137/1.9780898719581
[3]   EXISTENCE AND LOCATION OF EIGENVALUES FOR FLUID SOLID STRUCTURES [J].
CONCA, C ;
PLANCHARD, J ;
VANNINATHAN, M .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1989, 77 (03) :253-291
[4]  
Hager P, 2000, COMPUTATIONAL MECHANICS FOR THE TWENTY-FIRST CENTURY, P379, DOI 10.4203/csets.3.19
[5]  
HAGER P, 2001, THESIS CHALMERS U TE
[6]   RESIDUAL INVERSE ITERATION FOR THE NONLINEAR EIGENVALUE PROBLEM [J].
NEUMAIER, A .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (05) :914-923
[8]   ALGORITHMS FOR NONLINEAR EIGENVALUE PROBLEM [J].
RUHE, A .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (04) :674-689
[9]  
RUHE A, 2000, ZAPISKI NAUCHNYCH SE, V268, P176
[10]  
SLEIJPEN G, 2000, JACOBI DAVIDSON METH, P88