A zinc-iron redox-flow battery under $100 per kW h of system capital cost

被引:219
作者
Gong, Ke [1 ]
Ma, Xiaoya [1 ]
Conforti, Kameron M. [2 ]
Kuttler, Kevin J. [1 ]
Grunewald, Jonathan B. [1 ]
Yeager, Kelsey L. [1 ]
Bazant, Martin Z. [2 ,3 ]
Gu, Shuang [1 ]
Yan, Yushan [1 ]
机构
[1] Univ Delaware, Dept Chem & Biomol Engn, Newark, DE 19716 USA
[2] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
EXCHANGE MEMBRANE ELECTRODIALYSIS; RESEARCH-AND-DEVELOPMENT; HIGH-POWER DENSITY; ENERGY-STORAGE; CELL; PROGRESS; POLARIZATION; OPTIMIZATION;
D O I
10.1039/c5ee02315g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Redox flow batteries (RFBs) are one of the most promising scalable electricity-storage systems to address the intermittency issues of renewable energy sources such as wind and solar. The prerequisite for RFBs to be economically viable and widely employed is their low cost. Here we present a new zinc-iron (Zn-Fe) RFB based on double-membrane triple-electrolyte design that is estimated to have under $100 per kW h system capital cost. Such a low cost is achieved by a combination of inexpensive redox materials (i.e., zinc and iron) and high cell performance (e.g., 676 mW cm(-2) power density). Engineering of the cell structure is found to be critical to enable the high power density. Our cost model shows that a Zn-Fe RFB demonstrates the lowest cost among some notable RFBs and could reach the 2023 cost target set by the U.S. Department of Energy ($150 per kW h).
引用
收藏
页码:2941 / 2945
页数:5
相关论文
共 30 条
[1]   Dramatic performance gains in vanadium redox flow batteries through modified cell architecture [J].
Aaron, D. S. ;
Liu, Q. ;
Tang, Z. ;
Grim, G. M. ;
Papandrew, A. B. ;
Turhan, A. ;
Zawodzinski, T. A. ;
Mench, M. M. .
JOURNAL OF POWER SOURCES, 2012, 206 :450-453
[2]  
Braff W.A., 2013, NAT COMMUN, P4
[3]   Preliminary study of single flow zinc-nickel battery [J].
Cheng, Jie ;
Zhang, Li ;
Yang, Yu-Sheng ;
Wen, Yue-Hua ;
Cao, Gao-Ping ;
Wang, Xin-Dong .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (11) :2639-2642
[4]   Optimization and Analysis of High-Power Hydrogen/Bromine-Flow Batteries for Grid-Scale Energy Storage [J].
Cho, Kyu Taek ;
Albertus, Paul ;
Battaglia, Vincent ;
Kojic, Aleksandar ;
Srinivasan, Venkat ;
Weber, Adam Z. .
ENERGY TECHNOLOGY, 2013, 1 (10) :596-608
[5]   Redox flow cells for energy conversion [J].
de Leon, C. Ponce ;
Frias-Ferrer, A. ;
Gonzalez-Garcia, J. ;
Szanto, D. A. ;
Walsh, F. C. .
JOURNAL OF POWER SOURCES, 2006, 160 (01) :716-732
[6]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[7]   Fuel cell electric vehicles and hydrogen infrastructure: status 2012 [J].
Eberle, Ulrich ;
Mueller, Bernd ;
von Helmolt, Rittmar .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (10) :8780-8798
[8]   Chemical and Physical Solutions for Hydrogen Storage [J].
Eberle, Ulrich ;
Felderhoff, Michael ;
Schueth, Ferdi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (36) :6608-6630
[9]   A multiple ion-exchange membrane design for redox flow batteries [J].
Gu, Shuang ;
Gong, Ke ;
Yan, Emily Z. ;
Yan, Yushan .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (09) :2986-2998
[10]  
Hagedorn N.H., 1984, NASA REDOX STORAGE S