A Constraint Sequent Calculus for First-Order Logic with Linear Integer Arithmetic

被引:74
作者
Rummer, Philipp [1 ]
机构
[1] Chalmers, Dept Comp Sci & Engn, SE-41296 Gothenburg, Sweden
来源
Logic for Programming, Artificial Intelligence, and Reasoning, Proceedings | 2008年 / 5330卷
关键词
D O I
10.1007/978-3-540-89439-1_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
First-order logic modulo the theory of integer arithmetic is the basis for reasoning in many areas, including deductive software verification and software model checking. While satisfiability checking for ground formulae in this logic is well understood, it is still an open question how the general case of quantified formulae can be handled in an efficient and systematic way. As a possible answer, we introduce a sequent calculus that combines ideas from free-variable constraint tableaux with the Omega quantifier elimination procedure. The calculus is complete for theorems of first-order logic (without functions, but with arbitrary uninterpreted predicates), can decide Presburger arithmetic, and is complete for a substantial fragment of the combination of both.
引用
收藏
页码:274 / 289
页数:16
相关论文
共 15 条
[1]  
BAUMGARTNER P, 2008, MELIA MODEL IN PRESS
[2]  
BURCKERT HJ, 1990, LECT NOTES ARTIF INT, V449, P178
[3]   PROVING TERMINATION WITH MULTI-SET ORDERINGS [J].
DERSHOWITZ, N ;
MANNA, Z .
COMMUNICATIONS OF THE ACM, 1979, 22 (08) :465-476
[4]   Theorem proving modulo [J].
Dowek, G ;
Hardin, T ;
Kirchner, C .
JOURNAL OF AUTOMATED REASONING, 2003, 31 (01) :33-72
[5]  
Fitting M., 1996, 1 ORDER LOGIC AUTOMA, DOI DOI 10.1007/978-1-4612-2360-3
[6]  
GIESE M, 2001, LNCS, V2083, P545, DOI DOI 10.1007/3-540-45744-5_46
[7]  
Korovin K, 2007, LECT NOTES COMPUT SC, V4646, P223
[8]   Solving SAT and SAT modulo theories:: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T) [J].
Nieuwenhuis, Robert ;
Oliveras, Albert ;
Tinelli, Cesare .
JOURNAL OF THE ACM, 2006, 53 (06) :937-977
[9]   Differential dynamic logic for hybrid systems [J].
Platzer, Andre .
JOURNAL OF AUTOMATED REASONING, 2008, 41 (02) :143-189
[10]  
Presburger M., 1930, COMPT REND PREM C MA, P395