Optimization of Soil Hydraulic Model Parameters Using Synthetic Aperture Radar Data: An Integrated Multidisciplinary Approach

被引:35
作者
Pauwels, Valentijn R. N. [1 ]
Balenzano, Anna [2 ]
Satalino, Giuseppe [2 ]
Skriver, Henning [3 ]
Verhoest, Niko E. C. [1 ]
Mattia, Francesco [2 ]
机构
[1] Univ Ghent, Lab Hydrol & Water Management, B-9000 Ghent, Belgium
[2] CNR, Ist Studi Sistemi Intelligenti Automaz, I-70126 Bari, Italy
[3] Tech Univ Denmark, DK-2800 Lyngby, Denmark
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2009年 / 47卷 / 02期
关键词
Calibration; hydrology; parameter estimation; remote sensing; synthetic aperture radar (SAR); ENERGY-BALANCE PROCESSES; ATMOSPHERE TRANSFER SCHEME; SYSTEM SIMULATION EXPERIMENT; SPATIALLY-VARIABLE WATER; BRIGHTNESS TEMPERATURE; MOISTURE RETRIEVAL; SAR DATA; C-BAND; DISCHARGE PREDICTIONS; DATA ASSIMILATION;
D O I
10.1109/TGRS.2008.2007849
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
It is widely recognized that Synthetic Aperture Radar (SAR) data are a very valuable source of information for the modeling of the interactions between the land surface and the atmosphere. During the last couple of decades, most of the research on the use of SAR data in hydrologic applications has been focused on the retrieval of land and biogeophysical parameters (e.g., soil moisture contents). One relatively unexplored issue consists of the optimization of soil hydraulic model parameters, such its, for example, hydraulic conductivity, values, through remote sensing. This is due to the fact that no direct relationships between the remote-sensing observations, more specifically radar backscatter values, and the parameter values can be derived. However, land surface models can provide these relationships. The objective of this paper is to retrieve a number of soil physical model parameters through a combination of remote sensing anti land surface modeling. Spatially distributed and multitemporal SAR-based soil moisture maps are the basis of the study. The surface soil moisture values are used in a parameter estimation procedure basest on the Extended Kalman Filter equations. In fact, the land surface model is, thus, used to determine the relationship between the soil physical parameters and the remote-sensing data. An analysis is then performed, relating the retrieved soil parameters to the soil texture data available over the study area. The results of the study show that there is a potential to retrieve soil physical model parameters through a combination of land surface modeling and remote sensing.
引用
收藏
页码:455 / 467
页数:13
相关论文
共 50 条
  • [1] Probabilistic Flood Mapping Using Synthetic Aperture Radar Data
    Giustarini, Laura
    Hostache, Renaud
    Kavetski, Dmitri
    Chini, Marco
    Corato, Giovanni
    Schlaffer, Stefan
    Matgen, Patrick
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (12): : 6958 - 6969
  • [2] Super Resolution of Synthetic Aperture Radar Data By Convex Optimization
    Biondi, Filippo
    2016 4TH INTERNATIONAL WORKSHOP ON COMPRESSED SENSING THEORY AND ITS APPLICATIONS TO RADAR, SONAR AND REMOTE SENSING (COSERA), 2016, : 28 - 32
  • [3] A Multitexture Model for Multilook Polarimetric Synthetic Aperture Radar Data
    Eltoft, Torbjorn
    Anfinsen, Stian Normann
    Doulgeris, Anthony P.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (05): : 2910 - 2919
  • [4] Unsupervised burned areas detection using multitemporal synthetic aperture radar data
    Orlandi Simoes, Jose Victor
    Negri, Rogerio Galante
    Souza, Felipe Nascimento
    Goncalves Mendes, Tatiana Sussel
    Bressane, Adriano
    JOURNAL OF APPLIED REMOTE SENSING, 2024, 18 (01)
  • [5] Continuous monitoring of biophysical Eucalyptus sp parameters using interferometric synthetic aperture radar data in P and X bands
    Gama, Fabio Furlan
    dos Santos, Joao Roberto
    Mura, Jose Claudio
    JOURNAL OF APPLIED REMOTE SENSING, 2016, 10
  • [6] Inversion of Farmland Soil Moisture Based on Multi-Band Synthetic Aperture Radar Data and Optical Data
    Xu, Chongbin
    Liu, Qingli
    Wang, Yinglin
    Chen, Qian
    Sun, Xiaomin
    Zhao, He
    Zhao, Jianhui
    Li, Ning
    REMOTE SENSING, 2024, 16 (13)
  • [7] Calibrated Integral Equation Model for Bare Soil Moisture Retrieval of Synthetic Aperture Radar: A Case Study in Linze County
    Zhang, Ling
    Li, Hao
    Xue, Zhaohui
    APPLIED SCIENCES-BASEL, 2020, 10 (21): : 1 - 17
  • [8] Evaluation of radar backscattering models using L- and C-band synthetic aperture radar data
    Tao, Liangliang
    Li, Jing
    Jiang, Jinbao
    He, Shi
    Cai, Qingkong
    Chen, Xi
    JOURNAL OF APPLIED REMOTE SENSING, 2015, 9
  • [9] Deterioration of shallow costal environments using synthetic aperture radar data
    Elhag, Mohamed
    Bahrawi, Jarbou A.
    DESALINATION AND WATER TREATMENT, 2020, 194 : 333 - 342
  • [10] LEVEE ANOMALY DETECTION USING POLARIMETRIC SYNTHETIC APERTURE RADAR DATA
    Dabbiru, Lalitha
    Aanstoos, James V.
    Mahrooghy, Majid
    Li, Wei
    Shanker, Arjun
    Younan, Nicolas H.
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 5113 - 5116