The model dealt with is a linear elastic body in frictional contact with a rigid support. Limit states of such an assemblage are characterized by deformations and forces such that a small perturbation may introduce a large change in configuration. The class of limit states considered here is specified by the possibility of superposing a time constant rigid body velocity field to a static deformation. The problem of finding such states(i.e., forces and static deformations) for a prescribed rigid body velocity is formulated, and for the case when the geometrically admissible rigid body displacements form a linear space an existence result is given. It is proved that under restrictions on the magnitude of the friction coefficient and in the case that an intuitively clear condition on the direction of the forces is satisfied, there exist a load multiplier and a corresponding static displacement.