Venous blood effects in spin-echo fMRI of human brain

被引:0
|
作者
Oja, JME
Gillen, J
Kauppinen, RA
Kraut, M
van Zijl, PCM
机构
[1] Univ Kuopio, AI Virtanen Inst Mol Sci, NMR Res Grp, FIN-70211 Kuopio, Finland
[2] Johns Hopkins Univ, Sch Med, Dept Radiol, Baltimore, MD 21205 USA
关键词
functional MRI; spin echo; blood oxygenation level-dependent; brain; visual cortex; venous blood;
D O I
10.1002/(SICI)1522-2594(199910)42:4<617::AID-MRM1>3.0.CO;2-Q
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The spin-echo response to visual activation was studied as a function of spatial resolution at a field of 1.5 T. The results showed that the increase in absolute T-2 upon activation was as large as 22.8 +/- 3.1% (P < 0.05) at the highest resolution (5.3 mm(3)), while it was as small as 3.5 +/- 0.2% (P < 0.05) at the lowest resolution (42.2 mm(3)). In addition, upon increasing resolution, the spin-echo signal decay as a function of echo time changed from monoexponential to nonexponential. These data indicate that, when using the standard resolution for fMRI studies at 1.5 T,the effects of spin-echo changes in the draining veins are of major contribution to the total blood oxygenation level-dependent (BOLD) signal changes measured in voxels encompassing the activated brain areas. The data can be quantitatively accounted for using a model based on the intravascular origin of the spin-echo effect including both macrovascular and microvascular effects. Existing theories for the spin-echo BOLD effect based on diffusion through field gradients predict negligible spin-echo effects inside the large vessels and are therefore incompatible with the data. Magn Reson Med 42:617-626, 1999. (C) 1999 Wiley-Liss, Inc.
引用
收藏
页码:617 / 626
页数:10
相关论文
共 50 条
  • [1] Microvascular BOLD contribution at 4 and 7 T in the human brain: Gradient-echo and spin-echo fMRI with suppression of blood effects
    Duong, TQ
    Yacoub, E
    Adriany, G
    Hu, XP
    Ugurbil, K
    Kim, SG
    MAGNETIC RESONANCE IN MEDICINE, 2003, 49 (06) : 1019 - 1027
  • [2] Spin-echo fMRI: The poor relation?
    Norris, David G.
    NEUROIMAGE, 2012, 62 (02) : 1109 - 1115
  • [3] Functional Localization in the Human Brain: Gradient-Echo, Spin-Echo, and Arterial Spin-Labeling fMRI Compared with Neuronavigated TMS
    Diekhoff, Svenja
    Uludag, Kamil
    Sparing, Roland
    Tittgemeyer, Marc
    Cavusoglu, Mustafa
    von Cramon, D. Yves
    Grefkes, Christian
    HUMAN BRAIN MAPPING, 2011, 32 (03) : 341 - 357
  • [4] Spin-echo versus gradient-echo fMRI with short echo times
    Stroman, PW
    Krause, V
    Frankenstein, UN
    Malisza, KL
    Tomanek, B
    MAGNETIC RESONANCE IMAGING, 2001, 19 (06) : 827 - 831
  • [5] BRAIN HEMORRHAGE - EVALUATION WITH FAST SPIN-ECHO AND CONVENTIONAL DUAL SPIN-ECHO IMAGES
    JONES, KM
    MULKERN, RV
    MANTELLO, MT
    MELKI, PS
    AHN, SS
    BARNES, PD
    JOLESZ, FA
    RADIOLOGY, 1992, 182 (01) : 53 - 58
  • [6] Comparison of conventional spin-echo and fast spin-echo magnetic resonance imaging in the canine brain
    Sage, JE
    Samii, VF
    Abramson, CJ
    Green, EM
    Smith, M
    Dingus, C
    VETERINARY RADIOLOGY & ULTRASOUND, 2006, 47 (03) : 249 - 253
  • [7] Fast flair imaging of the brain using the fast spin-echo and gradient spin-echo technique
    Hittmair, K
    Umek, W
    Schindler, EG
    BaSsalamah, A
    Pretterklieber, ML
    Herold, CJ
    MAGNETIC RESONANCE IMAGING, 1997, 15 (04) : 405 - 414
  • [8] SPIN-ECHO P-31 SPECTROSCOPIC IMAGING IN THE HUMAN BRAIN
    MAUDSLEY, AA
    TWIEG, DB
    SAPPEYMARINIER, D
    HUBESCH, B
    HUGG, JW
    MATSON, GB
    WEINER, MW
    MAGNETIC RESONANCE IN MEDICINE, 1990, 14 (02) : 415 - 422
  • [9] FAST SPIN-ECHO IMAGING OF THE BRAIN AND SPINE
    ATLAS, SW
    HACKNEY, DB
    LISTERUD, J
    MAGNETIC RESONANCE QUARTERLY, 1993, 9 (02) : 61 - 83