Background Modeling via Incremental Maximum Margin Criterion

被引:0
作者
Marghes, Cristina [1 ]
Bouwmans, Thierry [1 ]
机构
[1] Univ La Rochelle, Lab MIA, F-17000 La Rochelle, France
来源
COMPUTER VISION - ACCV 2010 WORKSHOPS, PT II | 2011年 / 6469卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Subspace learning methods are widely used in background modeling to tackle illumination changes. Their main advantage is that it doesn't need to label data during the training and running phase. Recently, White et al. [1] have shown that a supervised approach can improved significantly the robustness in background modeling. Following this idea, we propose to model the background via a supervised subspace learning called Incremental Maximum Margin Criterion (IMMC). The proposed scheme enables to initialize robustly the background and to update incrementally the eigenvectors and eigenvalues. Experimental results made on the Wallflower datasets show the pertinence of the proposed approach.
引用
收藏
页码:394 / 403
页数:10
相关论文
共 50 条
[31]   Feature extraction using fuzzy maximum margin criterion [J].
Cui, Yan ;
Fan, Liya .
NEUROCOMPUTING, 2012, 86 :52-58
[32]   Learning Robust Features for Gait Recognition by Maximum Margin Criterion [J].
Balazia, Michal ;
Sojka, Petr .
STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2016, 2016, 10029 :585-586
[33]   Feature extraction based on Laplacian bidirectional maximum margin criterion [J].
Yang, Wankou ;
Wang, Jianguo ;
Ren, Mingwu ;
Yang, Jingyu ;
Zhang, Lei ;
Liu, Guanghai .
PATTERN RECOGNITION, 2009, 42 (11) :2327-2334
[34]   Kernel Parameter Optimization for KFDA Based on the Maximum Margin Criterion [J].
Zhao, Yue ;
Ma, Jinwen .
ADVANCES IN NEURAL NETWORKS - ISNN 2014, 2014, 8866 :330-337
[35]   Feature extraction using kernel Laplacian maximum margin criterion [J].
Sun, Zhongxi ;
Sun, Changyin ;
Yang, Wankou ;
Wang, Zhenyu .
OPTICAL ENGINEERING, 2012, 51 (06)
[36]   Transfer Learning with Joint Distribution Adaptation and Maximum Margin Criterion [J].
Wang, Pengju ;
Lu, Luxi ;
Li, Jian ;
Gan, Wenya .
2018 3RD INTERNATIONAL CONFERENCE ON COMMUNICATION, IMAGE AND SIGNAL PROCESSING, 2019, 1169
[37]   L1-norm-based maximum margin criterion [J].
Chen S.-B. ;
Chen D.-R. ;
Luo B. .
Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2016, 44 (06) :1383-1388
[38]   Maximum Margin Criterion based Band Extraction of Hyperspectral Imagery [J].
Datta, Aloke ;
Ghosh, Susmita ;
Ghosh, Ashish .
2014 FOURTH INTERNATIONAL CONFERENCE OF EMERGING APPLICATIONS OF INFORMATION TECHNOLOGY (EAIT), 2014, :300-304
[39]   Feature extraction by structured stepwise nonparametric maximum margin criterion [J].
Zheng, Yujie ;
Wu, Xiaojun ;
Yu, Dongjun ;
Yang, Jingyu ;
Wang, Weidong ;
Li, Yongzhi .
2006 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, 2006, :53-+
[40]   A Fuzzy Kernel Maximum Margin Criterion for Image Feature Extraction [J].
Xuan, Shibin .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015