Background Modeling via Incremental Maximum Margin Criterion

被引:0
作者
Marghes, Cristina [1 ]
Bouwmans, Thierry [1 ]
机构
[1] Univ La Rochelle, Lab MIA, F-17000 La Rochelle, France
来源
COMPUTER VISION - ACCV 2010 WORKSHOPS, PT II | 2011年 / 6469卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Subspace learning methods are widely used in background modeling to tackle illumination changes. Their main advantage is that it doesn't need to label data during the training and running phase. Recently, White et al. [1] have shown that a supervised approach can improved significantly the robustness in background modeling. Following this idea, we propose to model the background via a supervised subspace learning called Incremental Maximum Margin Criterion (IMMC). The proposed scheme enables to initialize robustly the background and to update incrementally the eigenvectors and eigenvalues. Experimental results made on the Wallflower datasets show the pertinence of the proposed approach.
引用
收藏
页码:394 / 403
页数:10
相关论文
共 50 条
[21]   Efficient and robust feature extraction by maximum margin criterion [J].
Li, HF ;
Jiang, T ;
Zhang, KH .
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 16, 2004, 16 :97-104
[22]   Face recognition by stepwise nonparametric margin maximum criterion [J].
Qiu, XP ;
Wu, LD .
TENTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1 AND 2, PROCEEDINGS, 2005, :1567-1572
[23]   Plant Recognition Based on Modified Maximum Margin Criterion [J].
Wang, Xianfeng ;
Zhang, Shanwen ;
Wang, Zhen .
INTELLIGENT COMPUTING METHODOLOGIES, ICIC 2018, PT III, 2018, 10956 :520-525
[24]   Consensus Maximum Margin Criterion for Classification of Proteomic Profile [J].
Yang, Xiaoli ;
Li, Dongxia .
MECHATRONICS ENGINEERING, COMPUTING AND INFORMATION TECHNOLOGY, 2014, 556-562 :351-354
[25]   Feature Extraction Using Laplacian Maximum Margin Criterion [J].
Wankou Yang ;
Changyin Sun ;
Helen S. Du ;
Jingyu Yang .
Neural Processing Letters, 2011, 33 :99-110
[26]   PROBABILITY MAXIMUM MARGIN CRITERION FOR CROP DISEASE RECOGNITION [J].
Zhang, C. ;
Zhang, S. ;
Wang, X. ;
Wang, X. ;
Yang, J. .
APPLIED ENGINEERING IN AGRICULTURE, 2016, 32 (06) :713-721
[27]   Efficient and robust feature extraction by maximum margin criterion [J].
Liu, Jun ;
Cheri, Songcan ;
Tan, Xiaoyang ;
Zhang, Daoqiang .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2007, 18 (06) :1862-1864
[28]   Feature Extraction Using Laplacian Maximum Margin Criterion [J].
Yang, Wankou ;
Sun, Changyin ;
Du, Helen S. ;
Yang, Jingyu .
NEURAL PROCESSING LETTERS, 2011, 33 (01) :99-110
[29]   Feature Extraction Base on Local Maximum Margin Criterion [J].
Yang, Wankou ;
Wang, Jianguo ;
Ren, Mingwu ;
Yang, Jingyu .
19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, :416-419
[30]   Efficient and robust feature extraction by maximum margin criterion [J].
Li, HF ;
Jiang, T ;
Zhang, KS .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (01) :157-165