Background Modeling via Incremental Maximum Margin Criterion

被引:0
|
作者
Marghes, Cristina [1 ]
Bouwmans, Thierry [1 ]
机构
[1] Univ La Rochelle, Lab MIA, F-17000 La Rochelle, France
来源
COMPUTER VISION - ACCV 2010 WORKSHOPS, PT II | 2011年 / 6469卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Subspace learning methods are widely used in background modeling to tackle illumination changes. Their main advantage is that it doesn't need to label data during the training and running phase. Recently, White et al. [1] have shown that a supervised approach can improved significantly the robustness in background modeling. Following this idea, we propose to model the background via a supervised subspace learning called Incremental Maximum Margin Criterion (IMMC). The proposed scheme enables to initialize robustly the background and to update incrementally the eigenvectors and eigenvalues. Experimental results made on the Wallflower datasets show the pertinence of the proposed approach.
引用
收藏
页码:394 / 403
页数:10
相关论文
共 50 条
  • [1] Background subtraction via incremental maximum margin criterion: a discriminative subspace approach
    Diana Farcas
    Cristina Marghes
    Thierry Bouwmans
    Machine Vision and Applications, 2012, 23 : 1083 - 1101
  • [2] Background subtraction via incremental maximum margin criterion: a discriminative subspace approach
    Farcas, Diana
    Marghes, Cristina
    Bouwmans, Thierry
    MACHINE VISION AND APPLICATIONS, 2012, 23 (06) : 1083 - 1101
  • [3] Robust visual tracking via incremental maximum margin criterion
    Wang, Lu
    Wen, Ming
    Wang, Chong
    Wang, Wenyuan
    ADVANCES IN NEURAL NETWORKS - ISNN 2006, PT 2, PROCEEDINGS, 2006, 3972 : 398 - 403
  • [4] Incremental maximum margin criterion based on eigenvalue decomposition updating algorithm
    Gui-Fu Lu
    Jian Zou
    Machine Vision and Applications, 2015, 26 : 807 - 817
  • [5] Incremental maximum margin criterion based on eigenvalue decomposition updating algorithm
    Lu, Gui-Fu
    Zou, Jian
    MACHINE VISION AND APPLICATIONS, 2015, 26 (06) : 807 - 817
  • [6] Transductive transfer learning via maximum margin criterion
    Tahmoresnezhad, J.
    Hashemi, S.
    SCIENTIA IRANICA, 2016, 23 (03) : 1239 - 1250
  • [7] Visual Tracking Based on Incremental Two-Dimensional Maximum Margin Criterion
    Wang, Lu
    2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 4, 2009, : 155 - 158
  • [8] Incremental maximum margin clustering
    V. Vijaya Saradhi
    P. Charly Abraham
    Pattern Analysis and Applications, 2016, 19 : 1057 - 1067
  • [9] Incremental maximum margin clustering
    Saradhi, V. Vijaya
    Abraham, P. Charly
    PATTERN ANALYSIS AND APPLICATIONS, 2016, 19 (04) : 1057 - 1067
  • [10] MULTIPLE KERNEL MAXIMUM MARGIN CRITERION
    Gu, Quanquan
    Zhou, Jie
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 2049 - 2052