ON THE MEAN VALUES OF DEDEKIND SUMS AND HARDY SUMS

被引:2
作者
Liu, Huaning [1 ]
机构
[1] Northwest Univ, Dept Math, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Dedekind sums; Hardy sums; mean value; asymptotic formula; FORMULA;
D O I
10.4134/JKMS.2009.46.1.187
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a positive integer k and an arbitrary integer h, the classical Dedekind sums s(h, k) is defined by s(h,k) = (k)Sigma(j=1) ((j/k)) ((hj/k)), where ((x)) {x - [x] - 1/2, if x is not an integer; 0, if x is an integer. J. B. Conrey et al proved that (k)Sigma(h=1)s(2m)(h, k) = f(m)(k) (k/12)(2m) + O((k(9/5) + k(2m-1+1/m+1)) log(3) k). (h,w)=1 For m >= 2, C. Jia reduced the error terms to O (k(2m-1)). While for m = 1, W. Zhang showed (k)Sigma(h=1) s(2)(h,k) = 5/144k phi(k) Pi p alpha parallel to k [(1+1/p)(2) - 1/p(3 alpha+1)/1 + 1/p + 1/p(2)] (h,k)=1 + O (k exp (4 log k/log log k)) In this paper we give some formulae on the mean value of the Dedekind sums and and Hardy sums, and generalize the above results.
引用
收藏
页码:187 / 213
页数:27
相关论文
共 22 条
[1]  
[Anonymous], 1972, CARUS MATH MONOGRAPH
[2]  
APOSTOL T, 1976, GRADUATE TEXTS MATH, V41
[3]  
APOSTOL TM, 1978, J REINE ANGEW MATH, V303, P332
[4]  
APOSTOL TM, 1977, ADV MATH, V23, P285
[5]  
BERNDT BC, 1976, J LOND MATH SOC, V13, P129
[6]  
BERNDT BC, 1974, ELEM MATH, V29, P93
[7]   STRATEGIC DETERRENCE OF SEQUENTIAL ENTRY INTO AN INDUSTRY [J].
BERNHEIM, BD .
RAND JOURNAL OF ECONOMICS, 1984, 15 (01) :1-11
[8]  
CHEN XF, 2000, CHINESE ANN MATH, V21, P715
[9]   Mean values of dedekind sums [J].
Conrey, JB ;
Fransen, E ;
Klein, R ;
Scott, C .
JOURNAL OF NUMBER THEORY, 1996, 56 (02) :214-226
[10]  
DEDEKIND R, 1930, GESAMMELTE MATH WERK, V1, P159