Encapsulating CuO quantum dots in MIL-125(Ti) coupled with g-C3N4 for efficient photocatalytic CO2 reduction

被引:128
|
作者
Li, Naixu [1 ,4 ]
Liu, Xinchi [1 ]
Zhou, Jiancheng [1 ]
Chen, Wenshuai [3 ]
Liu, Maochang [2 ]
机构
[1] Southeast Univ, Sch Chem & Chem Engn, 2 Dongnandaxue Rd, Nanjing 211189, Peoples R China
[2] Xi An Jiao Tong Univ, Int Res Ctr Renewable Energy, State Key Lab Multiphase Flow Power Engn, 28 Xianning West Rd, Xian 710049, Shaanxi, Peoples R China
[3] Northeast Forestry Univ, Minist Educ, Key Lab Biobased Mat Sci & Technol, 26 Hexing Rd, Harbin 150040, Peoples R China
[4] Jiangsu Key Lab Biomass Energy & Mat, 16 Suojin Wucun, Nanjing 210042, Peoples R China
基金
中国国家自然科学基金;
关键词
Metal organic framework; Photocatalysis; CO2; reduction; Quantum dots; METAL-ORGANIC FRAMEWORK; CARBON-DIOXIDE; TIO2; PERFORMANCE; FUELS; CH3OH; CH4; NANOCOMPOSITES; PHOTOREDUCTION; CONSTRUCTION;
D O I
10.1016/j.cej.2020.125782
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Improving the stability of metallic oxide quantum dots (QDs) in a reaction system containing water is crucial for their practical applications in photocatalytic reduction of carbon dioxide. Herein, we use simple complexationoxidation method to encapsulate CuO QDs in the pores of metal organic framework of MIL-125(Ti), and further combine it with g-C3N4 to form a composite photocatalyst, i.e., g-C3N4/CuO@MIL-125(Ti). Benefiting from the protection of the framework of MIL-125(Ti), the composite photocatalyst exhibits significantly improved stability in reaction systems containing water. In addition, due to the close contact of CuO QDs to the active catalytic site of Ti in MIL-125(Ti), the photogenerated electrons in the MIL-125(Ti) and g-C3N4 can be smoothly transferred to the confined CuO QDs, which remarkably enhances the photocatalytic activity of g-C3N4/CuO@ MIL-125(Ti) for photocatalytic CO2 reduction in the presence of water. An optimization of the photocatalyst has led to the yields of CO, methanol, acetaldehyde and ethanol up to 180.1, 997.2, 531.5 and 1505.7 mu mol/g, respectively. This work provides an effective strategy for improving the stability and charge separation property of metallic oxide-QDs modified photocatalyst toward efficient photocatalytic CO2 reduction.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] g-C3N4/TiO2 NANOCOMPOSITES AND THEIR APPLICATION IN PHOTOCATALYTIC CO2 REDUCTION: A MINIREVIEW
    Manrique-Holguin, M.
    Alvear-Daza, J. J.
    Rengifo-Herrera, J. A.
    Pizzio, L. R.
    LATIN AMERICAN APPLIED RESEARCH, 2023, 53 (01) : 71 - 76
  • [22] A review of g-C3N4-based photocatalytic materials for photocatalytic CO2 reduction
    Tang, Jing
    Guo, Chuanyu
    Wang, Tingting
    Cheng, Xiaoli
    Huo, Lihua
    Zhang, Xianfa
    Huang, Chaobo
    Major, Zoltan
    Xu, Yingming
    CARBON NEUTRALIZATION, 2024, 3 (04): : 557 - 583
  • [23] In situ growth of cobalt on ultrathin Ti3C2Tx as an efficient cocatalyst of g-C3N4 for enhanced photocatalytic CO2 reduction
    Su, Tongming
    Meng, Jundong
    Xiao, Ya
    Chen, Liuyun
    Ji, Hongbing
    Qin, Zuzeng
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2023, 64 : 76 - 86
  • [24] Heterostructures based on g-C3N4 for the photocatalytic CO2 reduction
    Alekseev, Roman F.
    Saraev, Andrey A.
    Kurenkova, Anna Yu.
    Kozlova, Ekaterina A.
    RUSSIAN CHEMICAL REVIEWS, 2024, 93 (05)
  • [25] Construction of NiO/g-C3N4 p-n heterojunctions for enhanced photocatalytic CO2 reduction
    Wang, Linxia
    Dong, Yali
    Zhang, Jiayan
    Tao, Feifei
    Xu, Jingjing
    JOURNAL OF SOLID STATE CHEMISTRY, 2022, 308
  • [26] Surface Nonpolarization of g-C3N4 by Decoration with Sensitized Quantum Dots for Improved CO2 Photoreduction
    Feng, Huajun
    Guo, Qiaoqi
    Xu, Yingfeng
    Chen, Ting
    Zhou, Yuyang
    Wang, Yigang
    Wang, Meizhen
    Shen, Dongsheng
    CHEMSUSCHEM, 2018, 11 (24) : 4256 - 4261
  • [27] Encapsulating Halide Perovskite Quantum Dots in Metal-Organic Frameworks for Efficient Photocatalytic CO2 Reduction
    Zhang, Jingwen
    Zhou, Wentian
    Chen, Junying
    Li, Yingwei
    CATALYSTS, 2024, 14 (09)
  • [28] Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4
    Li, Qian
    Wang, Songcan
    Sun, Zhuxing
    Tang, Qijun
    Liu, Yiqiu
    Wang, Lianzhou
    Wang, Haiqiang
    Wu, Zhongbiao
    NANO RESEARCH, 2019, 12 (11) : 2749 - 2759
  • [29] Tailoring the properties of g-C3N4 with CuO for enhanced photoelectrocatalytic CO2 reduction to methanol
    Jiang, Xiao Xia
    Hu, Xiu De
    Tarek, Mostafa
    Saravanan, Prabhu
    Alqadhi, Radfan
    Chin, Sim Yee
    Khan, Md Maksudur Rahman
    JOURNAL OF CO2 UTILIZATION, 2020, 40 (40)
  • [30] MXene Ti3C2 decorated g-C3N4/ZnO photocatalysts with improved photocatalytic performance for CO2 reduction
    Li, Jianxin
    Wang, Yuhua
    Wang, Yitong
    Guo, Yao
    Zhang, Shiding
    Song, Haixiang
    Li, Xianchang
    Gao, Qianqian
    Shang, Wanyu
    Hu, Shuaishuai
    Zheng, Huibin
    Li, Xifei
    NANO MATERIALS SCIENCE, 2023, 5 (02) : 237 - 245