Threshold Secret Sharing Requires a Linear-Size Alphabet

被引:4
作者
Bogdanov, Andrej [1 ]
Guo, Siyao [2 ]
Komargodski, Ilan [3 ,4 ]
机构
[1] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Peoples R China
[2] NYU Shanghai, Dept Comp Sci, Shanghai, Peoples R China
[3] Hebrew Univ Jerusalem, Comp Sci, Jerusalem, Israel
[4] NTT Res, Palo Alto, CA USA
基金
以色列科学基金会;
关键词
secret sharing; threshold; lower bound; LOWER BOUNDS; SCHEMES; POWER;
D O I
10.4086/toc.2020.v016a002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that for every n and 1 < t < n any t-out-of-n threshold secret sharing scheme for one-bit secrets requires share size log(t + 1). Our bound is tight when t = n - 1 and n is a prime power. In 1990 Kilian and Nisan proved the incomparable bound log(n - t + 2). Taken together, the two bounds imply that the share size of Shamir's secret sharing scheme (Comm ACM 1979) is optimal up to an additive constant even for one-bit secrets for the whole range of parameters 1 < t < n. More generally, we show that for all 1 < s < r < n, any ramp secret sharing scheme with secrecy threshold s and reconstruction threshold r requires share size log ((r + 1)/(r - s)). As part of our analysis we formulate a simple game-theoretic relaxation of secret sharing for arbitrary access structures. We prove the optimality of our analysis for threshold secret sharing with respect to this method and point out a general limitation.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 38 条
[1]  
[Anonymous], 1990, LNCS, DOI [DOI 10.1007/0-387-34799-2_3, DOI 10.1007/0-387-34799-2]
[2]   Superpolynomial lower bounds for monotone span programs [J].
Babai, L ;
Gál, A ;
Wigderson, A .
COMBINATORICA, 1999, 19 (03) :301-319
[3]   Separating the power of monotone span programs over different fields [J].
Beimel, A ;
Weinreb, E .
SIAM JOURNAL ON COMPUTING, 2005, 34 (05) :1196-1215
[4]  
Beimel Amos, 2011, Coding and Cryptology. Proceedings of the Third International Workshop, IWCC 2011, P11, DOI 10.1007/978-3-642-20901-7_2
[5]  
Beimel A, 2000, ANN IEEE CONF COMPUT, P188, DOI 10.1109/CCC.2001.933886
[6]   Lower bounds for monotone span programs [J].
Beimel, A ;
Gal, A ;
Paterson, M .
COMPUTATIONAL COMPLEXITY, 1996, 6 (01) :29-45
[7]   UNIVERSALLY IDEAL SECRET-SHARING SCHEMES [J].
BEIMEL, A ;
CHOR, B .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (03) :786-794
[8]  
Beimel A., 1996, SECURE SCHEMES SECRE
[9]  
Beimel A, 2007, LECT NOTES COMPUT SC, V4392, P253
[10]   Secret Sharing and Non-Shannon Information Inequalities [J].
Beimel, Amos ;
Orlov, Ilan .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (09) :5634-5649