Optimizing atomic resolution of force microscopy in ambient conditions

被引:56
作者
Wastl, Daniel S. [1 ]
Weymouth, Alfred J. [1 ]
Giessibl, Franz J. [1 ]
机构
[1] Univ Regensburg, Inst Expt & Appl Phys, D-93053 Regensburg, Germany
关键词
WATER-ADSORPTION; CANTILEVERS; NACL(100); SURFACES; MODE; SENSOR; SALT;
D O I
10.1103/PhysRevB.87.245415
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ambient operation poses a challenge to atomic force microscopy because in contrast to operation in vacuum or liquid environments, the cantilever dynamics change dramatically from oscillating in air to oscillating in a hydration layer when probing the sample. We demonstrate atomic resolution by imaging of the KBr(001) surface in ambient conditions by frequency-modulation atomic force microscopy with a cantilever based on a quartz tuning fork (qPlus sensor) and analyze both long- and short-range contributions to the damping. The thickness of the hydration layer increases with relative humidity; thus varying humidity enables us to study the influence of the hydration layer thickness on cantilever damping. Starting with measurements of damping versus amplitude, we analyzed the signal and the noise characteristics at the atomic scale. We then determined the optimal amplitude which enabled us to acquire high-quality atomically resolved images.
引用
收藏
页数:10
相关论文
共 50 条
[31]   Anharmonicity, solvation forces, and resolution in atomic force microscopy at the solid-liquid interface [J].
Voitchovsky, Kislon .
PHYSICAL REVIEW E, 2013, 88 (02)
[32]   High-Resolution Visualization of Fibrinogen Molecules and Fibrin Fibers with Atomic Force Microscopy [J].
Yermolenko, Ivan S. ;
Lishko, Valeryi K. ;
Ugarova, Tatiana P. ;
Magonov, Sergei N. .
BIOMACROMOLECULES, 2011, 12 (02) :370-379
[33]   Interpreting motion and force for narrow-band intermodulation atomic force microscopy [J].
Platz, Daniel ;
Forchheimer, Daniel ;
Tholen, Erik A. ;
Haviland, David B. .
BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2013, 4 :45-56
[34]   Optimizing 1-μs-Resolution Single-Molecule Force Spectroscopy on a Commercial Atomic Force Microscope [J].
Edwards, Devin T. ;
Faulk, Jaevyn K. ;
Sanders, Aric W. ;
Bull, Matthew S. ;
Walder, Robert ;
LeBlanc, Marc-Andre ;
Sousa, Marcelo C. ;
Perkins, Thomas T. .
NANO LETTERS, 2015, 15 (10) :7091-7098
[35]   Lateral Force Calibration in Atomic Force Microscopy: Minireview [J].
Wang, Huabin .
SCIENCE OF ADVANCED MATERIALS, 2017, 9 (01) :56-64
[36]   Observation of the V2O5(001) surface using ambient atomic force microscopy [J].
DaCosta, A ;
Mathieu, C ;
Barbaux, Y ;
Poelman, H ;
DalmaiVennik, G ;
Fiermans, L .
SURFACE SCIENCE, 1997, 370 (2-3) :339-344
[37]   Periodicity in bimodal atomic force microscopy [J].
Lai, Chia-Yun ;
Barcons, Victor ;
Santos, Sergio ;
Chiesa, Matteo .
JOURNAL OF APPLIED PHYSICS, 2015, 118 (04)
[38]   Stochastic noise in atomic force microscopy [J].
Labuda, Aleksander ;
Lysy, Martin ;
Paul, William ;
Miyahara, Yoichi ;
Gruetter, Peter ;
Bennewitz, Roland ;
Sutton, Mark .
PHYSICAL REVIEW E, 2012, 86 (03)
[39]   Nonlinear multimode dynamics and internal resonances of the scan process in noncontacting atomic force microscopy [J].
Hornstein, S. ;
Gottlieb, O. .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (07)
[40]   Quantum state atomic force microscopy [J].
Passian, Ali ;
Siopsis, George .
PHYSICAL REVIEW A, 2017, 95 (04)