Optimizing atomic resolution of force microscopy in ambient conditions

被引:56
作者
Wastl, Daniel S. [1 ]
Weymouth, Alfred J. [1 ]
Giessibl, Franz J. [1 ]
机构
[1] Univ Regensburg, Inst Expt & Appl Phys, D-93053 Regensburg, Germany
关键词
WATER-ADSORPTION; CANTILEVERS; NACL(100); SURFACES; MODE; SENSOR; SALT;
D O I
10.1103/PhysRevB.87.245415
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ambient operation poses a challenge to atomic force microscopy because in contrast to operation in vacuum or liquid environments, the cantilever dynamics change dramatically from oscillating in air to oscillating in a hydration layer when probing the sample. We demonstrate atomic resolution by imaging of the KBr(001) surface in ambient conditions by frequency-modulation atomic force microscopy with a cantilever based on a quartz tuning fork (qPlus sensor) and analyze both long- and short-range contributions to the damping. The thickness of the hydration layer increases with relative humidity; thus varying humidity enables us to study the influence of the hydration layer thickness on cantilever damping. Starting with measurements of damping versus amplitude, we analyzed the signal and the noise characteristics at the atomic scale. We then determined the optimal amplitude which enabled us to acquire high-quality atomically resolved images.
引用
收藏
页数:10
相关论文
共 50 条
[21]   Repulsive bimodal atomic force microscopy on polymers [J].
Gigler, Alexander M. ;
Dietz, Christian ;
Baumann, Maximilian ;
Martinez, Nicolas F. ;
Garcia, Ricardo ;
Stark, Robert W. .
BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2012, 3 :456-463
[22]   Nanorheology by atomic force microscopy [J].
Li, Tai-De ;
Chiu, Hsiang-Chih ;
Ortiz-Young, Deborah ;
Riedo, Elisa .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (12)
[23]   Atomic-Resolution Imaging of Graphite-Water Interface by Frequency Modulation Atomic Force Microscopy [J].
Suzuki, Kazuhiro ;
Oyabu, Noriaki ;
Kobayashi, Kei ;
Matsushige, Kazumi ;
Yamada, Hirofumi .
APPLIED PHYSICS EXPRESS, 2011, 4 (12)
[24]   Simultaneous atomic-resolution flexural and torsional imaging in liquid by frequency modulation atomic force microscopy [J].
Umemoto, Megumi ;
Kawamura, Ryuzo ;
Yoshikawa, Hiroshi Y. ;
Nakabayashi, Seiichiro ;
Kobayashi, Naritaka .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2020, 59 (SI)
[25]   Solvation force simulations in atomic force microscopy [J].
Xu, Rong-Guang ;
Leng, Yongsheng .
JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (21)
[26]   Measurement of no-slip and slip boundary conditions in confined Newtonian fluids using atomic force microscopy [J].
Henry, C. L. ;
Craig, V. S. J. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (41) :9514-9521
[27]   The role of nonlinear dynamics in quantitative atomic force microscopy [J].
Platz, Daniel ;
Forchheimer, Daniel ;
Tholen, Erik A. ;
Haviland, David B. .
NANOTECHNOLOGY, 2012, 23 (26)
[28]   Theory of phase spectroscopy in bimodal atomic force microscopy [J].
Lozano, Jose R. ;
Garcia, Ricardo .
PHYSICAL REVIEW B, 2009, 79 (01)
[29]   Atomic force microscopy with nanoelectrode tips for high resolution electrochemical, nanoadhesion and nanoelectrical imaging [J].
Nellist, Michael R. ;
Chen, Yikai ;
Mark, Andreas ;
Goedrich, Sebastian ;
Stelling, Christian ;
Jiang, Jingjing ;
Poddar, Rakesh ;
Li, Chunzeng ;
Kumar, Ravi ;
Papastavrou, Georg ;
Retsch, Markus ;
Brunschwig, Bruce S. ;
Huang, Zhuangqun ;
Xiang, Chengxiang ;
Boettcher, Shannon W. .
NANOTECHNOLOGY, 2017, 28 (09)
[30]   Optimization and calibration of atomic force microscopy sensitivity in terms of tip-sample interactions in high-order dynamic atomic force microscopy [J].
Liu, Yu ;
Guo, Qiuquan ;
Nie, Heng-Yong ;
Lau, W. M. ;
Yang, Jun .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (12)