Content-Based Recommender Systems plus DBpedia Knowledge = Semantics-Aware Recommender Systems

被引:11
作者
Basile, Pierpaolo [1 ]
Musto, Cataldo [1 ]
de Gemmis, Marco [1 ]
Lops, Pasquale [1 ]
Narducci, Fedelucio [1 ]
Semeraro, Giovanni [1 ]
机构
[1] Univ Bari Aldo Moro, Dept Comp Sci, I-70125 Bari, Italy
来源
SEMANTIC WEB EVALUATION CHALLENGE | 2014年 / 475卷
关键词
D O I
10.1007/978-3-319-12024-9_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper provides an overview of the work done in the ESWC Linked Open Data-enabled Recommender Systems challenge, in which we proposed an ensemble of algorithms based on popularity, Vector Space Model, Random Forests, Logistic Regression, and PageRank, running on a diverse set of semantic features. We ranked 1st in the top-N recommendation task, and 3rd in the tasks of rating prediction and diversity.
引用
收藏
页码:163 / 169
页数:7
相关论文
共 6 条