Fractal properties of equipotentials close to a rough conducting surface

被引:10
作者
Cajueiro, DO
Sampaio, VAD
de Castilho, CMC
Andrade, RFS
机构
[1] Univ Fed Bahia, Inst Fis, BR-40210340 Salvador, BA, Brazil
[2] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
关键词
D O I
10.1088/0953-8984/11/26/303
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The Koch curve is used in the problem of evaluating and characterizing the electric equipotential lines in the infinite semi-space limited by a rough conducting one-dimensional surface. The solution of Laplace's equation subject to a constant potential difference between the curve and a straight line placed at infinity is performed with the help of Liebmann's method, The fractal dimension, D-f, of the equipotentials is numerically evaluated with a box-counting method. It is found that D-f decays exponentially with distance, from the value D-f = 1.273 at the Koch curve to the D-f = 1.0 when the equipotentials become flat smooth lines. The method does not depend on the specific choice of the Koch curve to model the rough substrate.
引用
收藏
页码:4985 / 4992
页数:8
相关论文
共 50 条
  • [21] Force of friction between fractal rough surface and elastomer
    Popov, V. L.
    Filippov, A. E.
    [J]. TECHNICAL PHYSICS LETTERS, 2010, 36 (06) : 525 - 527
  • [22] General fractal distribution function for rough surface profiles
    New Jersey Inst of Technology, Newark, United States
    [J]. SIAM J Appl Math, 6 (1694-1719):
  • [23] Synthetic aperture radar image of fractal rough surface
    Wang Tong
    Tong Chuang-Ming
    Li Xi-Min
    Li Chang-Ze
    [J]. ACTA PHYSICA SINICA, 2016, 65 (07)
  • [24] A close look at the rough terrain of surface finish assessment
    Radhakrishnan, V
    Weckenmann, A
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 1998, 212 (05) : 411 - 420
  • [25] THE EFFECTIVE IMPEDANCE TENSOR OF A ROUGH PERFECTLY CONDUCTING SURFACE
    BRYUKHOVETSKIJ, AS
    TIGROV, VM
    FUKS, IM
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOFIZIKA, 1984, 27 (08): : 999 - 1005
  • [26] Fractal Characterization on Anisotropy and Fractal Reconstruction of Rough Surface of Granite Under Orthogonal Shear
    Xue, D. J.
    Liu, Y. T.
    Zhou, H. W.
    Wang, J. Q.
    Liu, J. F.
    Zhou, J.
    [J]. ROCK MECHANICS AND ROCK ENGINEERING, 2020, 53 (03) : 1225 - 1242
  • [27] Fractal Characterization on Anisotropy and Fractal Reconstruction of Rough Surface of Granite Under Orthogonal Shear
    D. J. Xue
    Y. T. Liu
    H. W. Zhou
    J. Q. Wang
    J. F. Liu
    J. Zhou
    [J]. Rock Mechanics and Rock Engineering, 2020, 53 : 1225 - 1242
  • [28] Fractal dimension of rough surface estimated by the cubic covering method
    Zhou, H.W.
    Xie, H.P.
    Kwasniewski, M.A.
    [J]. Mocaxue Xuebao/Tribology, 2000, 20 (06): : 455 - 459
  • [29] Moment method with wavelet expansions for fractal rough surface scattering
    Guo, LX
    Wu, ZS
    [J]. CHINESE PHYSICS LETTERS, 2002, 19 (11) : 1617 - 1620
  • [30] FRACTAL DIMENSION OF POPULUS DAVIDIANA LEAF SURFACE ROUGH EXTENT
    韩士杰
    潘建平
    王德洪
    [J]. Journal of Northeast Forestry University, 1995, (01) : 39 - 42