Theoretical study on the photocatalytic properties of graphene oxide with single Au atom adsorption

被引:19
作者
Ju, Lin [1 ,2 ]
Dai, Ying [1 ]
Wei, Wei [1 ]
Li, Mengmeng [1 ]
Jin, Cui [1 ]
Huang, Baibiao [1 ]
机构
[1] Shandong Univ, Sch Phys, State Key Lab Crystal Mat, Jinan 250100, Shandong, Peoples R China
[2] Anyang Normal Univ, Sch Phys & Elect Engn, Anyang 455000, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphene oxide; Photocatalyst; Water-splitting; GRAPHITE OXIDE; HIGHLY EFFICIENT; ACTIVE-SITES; HYDROGEN; WATER; NANOSHEETS; CATALYSIS; 1ST-PRINCIPLES; DISPERSION; OXIDATION;
D O I
10.1016/j.susc.2017.11.012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The photocatalytic properties of graphene oxide (GO) with single Au atom adsorption are studied via the first principles calculations based on the density functional theory. The present study addresses the origin of enhancement in photocatalytic efficiency of GO derived from single Au atom depositing. Compared with the clean one, the work function of the single Au atom adsorbed GO is lowered due to the charge transfer from Au to GO, indicating enhanced surface activity. The Au atom plays as an electron trapping center and a mediating role in charge transfer from photon excited GO to target species. The photogenerated electron hole pairs can be separated effectively. For the GO configuration with atomic Au dispersion, there are some states introduced in the band gap, which are predominantly composed of Au 6s states. Through the in-gap state, the photo-generated electron transfer from the valence band of clean GO to the conductive band more easily. In addition, the reduction of the gap in the system is also presented in the current work, which indicates that the single Au atom adsorption improves light absorption for the GO based photocatalyst. These theoretical results are valuable for the future applications of GO materials as photocatalyst for water splitting. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:71 / 78
页数:8
相关论文
共 56 条
[1]  
[Anonymous], 111 ORIENTED GOLD NA
[2]   Variational principles for describing chemical reactions: The Fukui function and chemical hardness revisited [J].
Ayers, PW ;
Parr, RG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (09) :2010-2018
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   Modeling of graphite oxide [J].
Boukhvalov, D. W. ;
Katsnelson, M. I. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (32) :10697-10701
[5]   Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide [J].
Cai, Weiwei ;
Piner, Richard D. ;
Stadermann, Frank J. ;
Park, Sungjin ;
Shaibat, Medhat A. ;
Ishii, Yoshitaka ;
Yang, Dongxing ;
Velamakanni, Aruna ;
An, Sung Jin ;
Stoller, Meryl ;
An, Jinho ;
Chen, Dongmin ;
Ruoff, Rodney S. .
SCIENCE, 2008, 321 (5897) :1815-1817
[6]   The structure of catalytically active gold on titania [J].
Chen, MS ;
Goodman, DW .
SCIENCE, 2004, 306 (5694) :252-255
[7]   Atomically Dispersed Supported Metal Catalysts [J].
Flytzani-Stephanopoulos, Maria ;
Gates, Bruce C. .
ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING, VOL 3, 2012, 3 :545-574
[8]   Single Atom (Pd/Pt) Supported on Graphitic Carbon Nitride as an Efficient Photocatalyst for Visible-Light Reduction of Carbon Dioxide [J].
Gao, Guoping ;
Jiao, Yan ;
Waclawik, Eric R. ;
Du, Aijun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (19) :6292-6297
[9]   Semiempirical GGA-type density functional constructed with a long-range dispersion correction [J].
Grimme, Stefan .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2006, 27 (15) :1787-1799
[10]   Size- and support-dependency in the catalysis of gold [J].
Haruta, M .
CATALYSIS TODAY, 1997, 36 (01) :153-166