Water use efficiency of China's terrestrial ecosystems and responses to drought

被引:220
|
作者
Liu, Yibo [1 ,2 ,3 ]
Xiao, Jingfeng [4 ,5 ]
Ju, Weimin [2 ,3 ]
Zhou, Yanlian [2 ,6 ]
Wang, Shaoqiang [7 ]
Wu, Xiaocui [2 ,3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Jiangsu Key Lab Agr Meteorol, Nanjing 210044, Jiangsu, Peoples R China
[2] Nanjing Univ, Jiangsu Prov Key Lab Geog Informat Sci & Technol, Nanjing 210023, Jiangsu, Peoples R China
[3] Nanjing Univ, Int Inst Earth Syst Sci, Nanjing 210023, Jiangsu, Peoples R China
[4] Univ New Hampshire, Inst Study Earth Oceans & Space, Earth Syst Res Ctr, Durham, NH 03824 USA
[5] Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Int Ctr Ecol Meteorol & Environm, Nanjing 210044, Jiangsu, Peoples R China
[6] Nanjing Univ, Sch Geog & Oceanog Sci, Nanjing 210023, Jiangsu, Peoples R China
[7] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Ecosyst Network Observat & Modeling, Beijing 100101, Peoples R China
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
NET PRIMARY PRODUCTIVITY; CARBON-DIOXIDE; SPATIAL VARIABILITY; FOREST ECOSYSTEMS; MODEL-DRIVEN; FLUX TOWER; MODIS DATA; EVAPOTRANSPIRATION; CLIMATE; SEQUESTRATION;
D O I
10.1038/srep13799
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Water use efficiency (WUE) measures the trade-off between carbon gain and water loss of terrestrial ecosystems, and better understanding its dynamics and controlling factors is essential for predicting ecosystem responses to climate change. We assessed the magnitude, spatial patterns, and trends of WUE of China's terrestrial ecosystems and its responses to drought using a process-based ecosystem model. During the period from 2000 to 2011, the national average annual WUE (net primary productivity (NPP)/evapotranspiration (ET)) of China was 0.79 g C kg(-1) H2O. Annual WUE decreased in the southern regions because of the decrease in NPP and the increase in ET and increased in most northern regions mainly because of the increase in NPP. Droughts usually increased annual WUE in Northeast China and central Inner Mongolia but decreased annual WUE in central China. "Turning-points" were observed for southern China where moderate and extreme droughts reduced annual WUE and severe drought slightly increased annual WUE. The cumulative lagged effect of drought on monthly WUE varied by region. Our findings have implications for ecosystem management and climate policy making. WUE is expected to continue to change under future climate change particularly as drought is projected to increase in both frequency and severity.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Spatiotemporal patterns of water use efficiency in China and responses to multi-scale drought
    Zhao, Anzhou
    Zhang, Anbing
    Cao, Sen
    Feng, Lili
    Pei, Tao
    THEORETICAL AND APPLIED CLIMATOLOGY, 2020, 140 (1-2) : 559 - 570
  • [22] Water use efficiency of net primary production in global terrestrial ecosystems
    Xia, Lei
    Wang, Fei
    Mu, Xingmin
    Jin, Kai
    Sun, Wenyi
    Gao, Peng
    Zhao, Guangju
    JOURNAL OF EARTH SYSTEM SCIENCE, 2015, 124 (05) : 921 - 931
  • [23] Spatial variations in water use efficiency across global terrestrial ecosystems
    Cui, Shuyan
    Xiao, Yushan
    Yang, Yuting
    Hu, Zhongmin
    Zheng, Guo
    CATENA, 2024, 235
  • [24] Water use efficiency of net primary production in global terrestrial ecosystems
    Lei Xia
    Fei Wang
    Xingmin Mu
    Kai Jin
    Wenyi Sun
    Peng Gao
    Guangju Zhao
    Journal of Earth System Science, 2015, 124 : 921 - 931
  • [25] Carbon and water fluxes are more sensitive to drought than heat in terrestrial ecosystems in China
    Li, Yuzhen
    Xu, Yajing
    Zhang, Wenqiang
    Zhuang, Qingwei
    Zhang, Yue
    Cai, Peng
    JOURNAL OF HYDROLOGY, 2021, 603
  • [26] Responses of ecosystem water use efficiency to meteorological drought under different biomes and drought magnitudes in northern China
    Xu, Hao-jie
    Wang, Xin-ping
    Zhao, Chuan-yan
    Zhang, Xiao-xiao
    AGRICULTURAL AND FOREST METEOROLOGY, 2019, 278
  • [27] Soil moisture content-based analysis of terrestrial ecosystems in China: Water use efficiency of vegetation systems
    Ding, Hao
    Yuan, Zhe
    Shi, Xiaoliang
    Yin, Jun
    Chen, Fei
    Shi, Mengqi
    Zhang, Fulong
    ECOLOGICAL INDICATORS, 2023, 150
  • [28] Responses of Mungbean to Water Deficit, Water use Efficiency and Drought Resistance
    Sajitha, B.
    Karthiyayini, R.
    Samundeeswari
    LEGUME RESEARCH, 2022, 45 (02) : 154 - 161
  • [29] Drought-Induced Carbon and Water Use Efficiency Responses in Dryland Vegetation of Northern China
    Gang, Chengcheng
    Zhang, Yi
    Guo, Liang
    Gao, Xuerui
    Peng, Shouzhang
    Chen, Mingxun
    Wen, Zhongming
    FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [30] Carbon use efficiency and storage in terrestrial ecosystems
    Bradford, Mark A.
    Crowther, Thomas W.
    NEW PHYTOLOGIST, 2013, 199 (01) : 7 - 9