Polymer Grafted Nanoparticles: Effect of Chemical and Physical Heterogeneity in Polymer Grafts on Particle Assembly and Dispersion

被引:78
作者
Jayaraman, Arthi [1 ]
机构
[1] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
copolymer; molecular modeling; polydispersity; polymer nanocomposites; MONTE-CARLO-SIMULATION; DIBLOCK-COPOLYMER; MOLECULAR-WEIGHT; PRISM THEORY; PHASE-BEHAVIOR; GOOD SOLVENT; BRUSH; HOMOPOLYMER; LOCATION; CHAINS;
D O I
10.1002/polb.23260
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Macroscopic properties of polymer nanocomposites depend on the microscopic composite morphology of the constituent nanoparticles and polymer matrix. One way to control the spatial arrangement of the nanoparticles in the polymer matrix is by grafting the nanoparticle surfaces with polymers that can tune the effective interparticle interactions in the polymer matrix. A fundamental understanding of how graft and matrix polymer chemistries and molecular weight, grafting density, and nanoparticle size, and chemistry affect interparticle interactions is needed to design the appropriate polymer ligands to achieve the target morphology. Theory and simulations have proven to be useful tools in this regard due to their ability to link molecular level interactions to the morphology. In this feature article, we present our recent theory and simulation studies of polymer grafted nanoparticles with chemical and physical heterogeneity in grafts to calculate the effective interactions and morphology as a function of chemistry, molecular weights, grafting densities, and so forth. (C) 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 524-534
引用
收藏
页码:524 / 534
页数:11
相关论文
共 88 条
[1]  
Akcora P, 2009, NAT MATER, V8, P354, DOI [10.1038/nmat2404, 10.1038/NMAT2404]
[2]   Implementing molecular dynamics on hybrid high performance computers - short range forces [J].
Brown, W. Michael ;
Wang, Peng ;
Plimpton, Steven J. ;
Tharrington, Arnold N. .
COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (04) :898-911
[3]  
Causin V, 2008, J NANOSCI NANOTECHNO, V8, P1790, DOI 10.1166/jnn.2008.028
[4]   DENSITY PROFILE OF TERMINALLY ANCHORED POLYMER-CHAINS - A MONTE-CARLO STUDY [J].
CHAKRABARTI, A ;
TORAL, R .
MACROMOLECULES, 1990, 23 (07) :2016-2021
[5]   Computer simulations of block copolymer tethered nanoparticle self-assembly [J].
Chan, Elaine R. ;
Ho, Lin C. ;
Glotzer, Sharon C. .
JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (06)
[6]   Simulations of tetra-tethered organic/inorganic nanocube-polymer assemblies [J].
Chan, ER ;
Zhang, X ;
Lee, CY ;
Neurock, M ;
Glotzer, SC .
MACROMOLECULES, 2005, 38 (14) :6168-6180
[7]   Self-consistent field theory simulations of block copolymer assembly on a sphere [J].
Chantawansri, Tanya L. ;
Bosse, August W. ;
Hexemer, Alexander ;
Ceniceros, Hector D. ;
Garcia-Cervera, Carlos J. ;
Kramer, Edward J. ;
Fredrickson, Glenn H. .
PHYSICAL REVIEW E, 2007, 75 (03)
[8]   Control of nanoparticle location in block copolymers [J].
Chiu, JJ ;
Kim, BJ ;
Kramer, EJ ;
Pine, DJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (14) :5036-5037
[9]   Structure of solvent-free grafted nanoparticles: Molecular dynamics and density-functional theory [J].
Chremos, Alexandros ;
Panagiotopoulos, Athanassios Z. ;
Yu, Hsiu-Yu ;
Koch, Donald L. .
JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (11)
[10]   Gold nanoparticle/polymer nanocomposites: Dispersion of nanoparticles as a function of capping agent molecular weight and grafting density [J].
Corbierre, MK ;
Cameron, NS ;
Sutton, M ;
Laaziri, K ;
Lennox, RB .
LANGMUIR, 2005, 21 (13) :6063-6072