Cubic and Quartic Transformations of the Sixth Painleve Equation in Terms of Riemann-Hilbert Correspondence

被引:3
作者
Mazzocco, Marta [1 ]
Vidunas, Raimundas
机构
[1] Univ Loughborough, Sch Math, Loughborough LE11 3TU, Leics, England
基金
英国工程与自然科学研究理事会;
关键词
QUADRATIC TRANSFORMATIONS; DIFFERENTIAL-EQUATIONS; MONODROMY;
D O I
10.1111/j.1467-9590.2012.00562.x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The starting point of this paper is a classification of quadratic polynomial transformations of the monodromy manifold for the 2 x 2 isomonodromic Fuchsian systems associated to the Painleve VI equation. Up to birational automorphisms of the monodromy manifold, we find three transformations. Two of them are identified as the action of known quadratic or quartic transformations of the Painleve VI equation. The third transformation of the monodromy manifold gives a new transformation of degree 3 of Picards solutions of Painleve VI.
引用
收藏
页码:17 / 48
页数:32
相关论文
共 28 条
[1]  
[Anonymous], 2012, MATH PUBLIC KEY CRYP
[2]  
Bolibruch A.A., 1993, DEV MATH MOSCOW SCH, P54
[3]   Isomonodromic deformations and twisted Yangians arising in Teichmuller theory [J].
Chekhov, Leonid ;
Mazzocco, Marta .
ADVANCES IN MATHEMATICS, 2011, 226 (06) :4731-4775
[4]   Monodromy of certain Painleve-VI transcendents and reflection groups [J].
Dubrovin, B ;
Mazzocco, M .
INVENTIONES MATHEMATICAE, 2000, 141 (01) :55-147
[5]   Canonical structure and symmetries of the Schlesinger equations [J].
Dubrovin, Boris ;
Mazzocco, Marta .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 271 (02) :289-373
[6]   Noncommutative del Pezzo surfaces and Calabi-Yau algebras [J].
Etingof, Pavel ;
Ginzburg, Victor .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (06) :1371-1416
[8]  
Garnier R., 1926, ANN SCI ECOLE NORM S, V43, P239
[9]  
Gromak VI, 2003, J NONLINEAR MATH PHY, V10, P57, DOI 10.2991/jnmp.2003.10.s2.5
[10]  
HITCHIN NJ, 1995, J DIFFER GEOM, V42, P30