Biodegradable hyaluronic acid hydrogels to control release of dexamethasone through aqueous Diels-Alder chemistry for adipose tissue engineering

被引:77
作者
Fan, Ming [1 ]
Ma, Ye [1 ]
Zhang, Ziwei [1 ]
Mao, Jiahui [1 ]
Tan, Huaping [1 ]
Hu, Xiaohong [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
[2] Jinling Inst Technol, Sch Mat Engn, Nanjing, Jiangsu, Peoples R China
来源
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS | 2015年 / 56卷
基金
中国国家自然科学基金;
关键词
Hyaluronic acid; Injectable hydrogel; Cell scaffold; Drug delivery; Tissue engineering; CELL-AGGREGATION; CLICK CHEMISTRY; DRUG-DELIVERY; STEM-CELLS; SCAFFOLD; DIFFERENTIATION; NETWORKS; REGENERATION; CHITOSAN; DESIGN;
D O I
10.1016/j.msec.2015.04.004
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
A robust synthetic strategy of biopolymer-based hydrogels has been developed where hyaluronic acid derivatives reacted through aqueous Diels-Alder chemistry without the involvement of chemical catalysts, allowing for control and sustain release of dexamethasone. To conjugate the hydrogel, furan and maleimide functionalized hyaluronic acid were synthesized, respectively, as well as furan functionalized dexamethasone, for the covalent immobilization. Chemical structure, gelation time, morphologies, swelling kinetics, weight loss, compressive modulus and dexamethasone release of the hydrogel system in PBS at 37 degrees C were studied. The results demonstrated that the aqueous Diels-Alder chemistry provides an extremely selective reaction and proceeds with high efficiency for hydrogel conjugation and covalent immobilization of dexamethasone. Cell culture results showed that the dexamethasone immobilized hydrogel was noncytotoxic and preserved proliferation of entrapped human adipose-derived stem cells. This synthetic approach uniquely allows for the direct fabrication of biologically functionalized gel scaffolds with ideal structures for adipose tissue engineering, which provides a competitive alternative to conventional conjugation techniques such as copper mediated click chemistry. (C) 2015 Published by Elsevier B.V.
引用
收藏
页码:311 / 317
页数:7
相关论文
共 34 条
[31]  
Wu JD, 2009, CHINESE SCI BULL, V54, P3174, DOI [10.1007/s11434-009-0215-2, 10.1007/S11434-009-0215-2]
[32]   A One Pot, One Step Method for the Preparation of Clickable Hydrogels by Photoinitiated Polymerization [J].
Yilmaz, Gorkem ;
Kahveci, Muhammet U. ;
Yagci, Yusuf .
MACROMOLECULAR RAPID COMMUNICATIONS, 2011, 32 (23) :1906-1909
[33]  
Yousaf MN, 2001, ANGEW CHEM INT EDIT, V40, P1093, DOI 10.1002/1521-3773(20010316)40:6<1093::AID-ANIE10930>3.0.CO
[34]  
2-Q