An Experimental Investigation of State-Variable Modal Decomposition for Modal Analysis

被引:10
作者
Farooq, Umar [1 ]
Feeny, Brian F. [1 ]
机构
[1] Michigan State Univ, Dept Mech Engn, Dynam & Vibrat Res Lab, E Lansing, MI 48824 USA
来源
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME | 2012年 / 134卷 / 02期
基金
美国国家科学基金会;
关键词
PROPER ORTHOGONAL MODES; PHYSICAL INTERPRETATION; VIBRATION SYSTEMS; IDENTIFICATION;
D O I
10.1115/1.4003156
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This work presents the experimental evaluation of the state-variable modal decomposition method for a modal parameter estimation of multidegree-of-freedom and continuous vibration systems. Using output response ensembles only, the generalized eigenvalue problem is formed to estimate eigenfrequencies and modal vectors for a lightly damped linear clamped-free experimental beam. The estimated frequencies and modal vectors are compared against the theoretical system frequencies and modal vectors. Satisfactory results are obtained for estimating both system frequencies and modal vectors for the first five modes. To validate the actual modes from the spurious ones, modal coordinates are employed, which, together with frequency and vector estimates, substantiate the true modes. This paper also addresses the error associated with estimation when the number of sensors is less than the active/dominant modes of the system shown via a numerical example. [DOI: 10.1115/1.4003156]
引用
收藏
页数:8
相关论文
共 41 条
[1]  
[Anonymous], SAE T
[2]  
[Anonymous], 1998, LINEAR SYSTEM THEORY
[3]  
[Anonymous], 1996, SUBSPACE IDENTIFICAT, DOI DOI 10.1007/978-1-4613-0465-4
[4]  
Antsaklis P. J., 2006, LINEAR SYSTEMS
[5]   Experimental determination of flexural power flow in beams using a modified prony method [J].
Arruda, JRF ;
Campos, JP ;
Piva, JI .
JOURNAL OF SOUND AND VIBRATION, 1996, 197 (03) :309-328
[6]  
Bendat J. S., 2011, Random data: analysis and measurement procedures.
[7]   DETERMINATION OF STRUCTURAL-MODES VIA THE PRONY MODEL - SYSTEM ORDER AND NOISE INDUCED POLES [J].
BRAUN, S ;
RAM, YM .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1987, 81 (05) :1447-1459
[8]   Modal identification of output-only systems using frequency domain decomposition [J].
Brincker, R ;
Zhang, LM ;
Andersen, P .
SMART MATERIALS & STRUCTURES, 2001, 10 (03) :441-445
[9]   CLASSICAL NORMAL MODES IN DAMPED LINEAR DYNAMIC SYSTEMS [J].
CAUGHEY, TK ;
OKELLY, MEJ .
JOURNAL OF APPLIED MECHANICS, 1965, 32 (03) :583-&
[10]   Smooth orthogonal decomposition-based vibration mode identification [J].
Chelidze, D ;
Zhou, WL .
JOURNAL OF SOUND AND VIBRATION, 2006, 292 (3-5) :461-473