Product theorem for K-stability

被引:9
作者
Zhuang, Ziquan [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Fano variety; K-stability; KAHLER-EINSTEIN METRICS; FANO VARIETIES; LIMITS;
D O I
10.1016/j.aim.2020.107250
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a product formula for delta invariant and as an application, we show that product of K-(semi, poly)stable Fano varieties is also K-(semi, poly)stable. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:18
相关论文
共 32 条
  • [1] Ahmadinezhad H., 2020, ARXIV200313788
  • [2] Altmann K, 2012, EMS SER CONGR REP, P17
  • [3] [Anonymous], 2013, Cambridge Tracts in Mathematics
  • [4] [Anonymous], 2013, Cambridge Tracts in Mathematics
  • [5] K-polystability of Q-Fano varieties admitting Kahler-Einstein metrics
    Berman, Robert J.
    [J]. INVENTIONES MATHEMATICAE, 2016, 203 (03) : 973 - 1025
  • [6] Thresholds, valuations, and K-stability
    Blum, Harold
    Jonsson, Mattias
    [J]. ADVANCES IN MATHEMATICS, 2020, 365
  • [7] Uniqueness of K-polystable degenerations of Fano varieties
    Blum, Harold
    Xu, Chenyang
    [J]. ANNALS OF MATHEMATICS, 2019, 190 (02) : 609 - 656
  • [8] Boucksom S, 2015, LOND MATH S, V417, P29
  • [9] Boucksom S, 2017, ANN I FOURIER, V67, P743
  • [10] [Чельцов Иван Анатольевич Cheltsov Ivan Anatol'evich], 2008, [Успехи математических наук, Russian Mathematical Surveys, Uspekhi matematicheskikh nauk], V63, P73