Online State Estimation of a Fin-Actuated Underwater Robot Using Artificial Lateral Line System

被引:70
作者
Zheng, Xingwen [1 ]
Wang, Wei [2 ,3 ]
Xiong, Minglei [1 ,4 ]
Xie, Guangming [1 ,5 ,6 ]
机构
[1] Peking Univ, State Key Lab Turbulence & Complex Syst, Intelligent Biomimet Design Lab, Coll Engn, Beijing 100871, Peoples R China
[2] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, Dept Urban Studies & Planning, Cambridge, MA 02139 USA
[4] Boya Gongdao Beijing Robot Technol Co Ltd, Beijing 100084, Peoples R China
[5] Peng Cheng Lab, Shenzhen 518055, Peoples R China
[6] Peking Univ, Ocean Res Inst, Beijing 100871, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Unmanned underwater vehicles; Robot sensing systems; Trajectory; Estimation; Pressure sensors; Artificial lateral line; flow sensing; pressure variation (PV); robotic fish; state estimation; FLOW;
D O I
10.1109/TRO.2019.2956343
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
A lateral line system is a flow-responsive organ system, with which fish can effectively sense the surrounding flow field, thus serving functions in flow-aided fish behaviors. Inspired by such a biological characteristic, artificial lateral line systems (ALLSs) have been developed for promoting technological innovations of underwater robots. In this article, we focus on investigating state estimation of a freely swimming robotic fish in multiple motions, including rectilinear motion, turning motion, gliding motion, and spiral motion. The state refers to motion parameters, including linear velocity, angular velocity, motion radius, etc., and trajectory of the robotic fish. Specifically, for each motion, a pressure variation (PV) model that links motion parameters to PVs surrounding the robotic fish is first built; then, a linear regression analysis method is used for determining the model parameters. Based on the acquired PV model, motion parameters can be estimated by solving the PV model inversely using the PVs measured by the ALLS. Finally, a trajectory estimation method is proposed for estimating trajectory of the robotic fish based on the ALLS-estimated motion parameters. The experimental results show that the robotic fish is able to estimate its trajectory in the aforementioned multiple motions with the aid of ALLS, with small estimation errors.
引用
收藏
页码:472 / 487
页数:16
相关论文
共 42 条
[1]   Reliable underwater dipole source characterization in 3D space by an optimally designed artificial lateral line system [J].
Ahrari, Ali ;
Lei, Hong ;
Sharif, Montassar Aidi ;
Deb, Kalyanmoy ;
Tan, Xiaobo .
BIOINSPIRATION & BIOMIMETICS, 2017, 12 (03)
[2]   Self-motion effects on hydrodynamic pressure sensing: part I. Forward-backward motion [J].
Akanyeti, Otar ;
Chambers, Lily D. ;
Jezov, Jaas ;
Brown, Jennifer ;
Venturelli, Roberto ;
Kruusmaa, Maarja ;
Megill, William M. ;
Fiorini, Paolo .
BIOINSPIRATION & BIOMIMETICS, 2013, 8 (02)
[3]   Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena [J].
Asadnia, Mohsen ;
Kottapalli, Ajay Giri Prakash ;
Miao, Jianmin ;
Warkiani, Majid Ebrahimi ;
Triantafyllou, Michael S. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2015, 12 (111)
[4]   MEMS sensors for assessing flow- related control of an underwater biomimetic robotic stingray [J].
Asadnia, Mohsen ;
Kottapalli, Ajay Giri Prakash ;
Haghighi, Reza ;
Cloitre, Audren ;
Alvarado, Pablo Valdivia y ;
Miao, Jianmin ;
Triantafyllou, Michael .
BIOINSPIRATION & BIOMIMETICS, 2015, 10 (03)
[5]   Flexible and Surface-Mountable Piezoelectric Sensor Arrays for Underwater Sensing in Marine Vehicles [J].
Asadnia, Mohsen ;
Kottapalli, Ajay Giri Prakash ;
Shen, Zhiyuan ;
Miao, Jianmin ;
Triantafyllou, Michael .
IEEE SENSORS JOURNAL, 2013, 13 (10) :3918-3925
[6]  
Bleckmann H., 1986, ROLE LATERAL LINE FI
[7]   Performance of neural networks for localizing moving objects with an artificial lateral line [J].
Boulogne, Luuk H. ;
Wolf, Ben J. ;
Wiering, Marco A. ;
van Netten, Sietse M. .
BIOINSPIRATION & BIOMIMETICS, 2017, 12 (05)
[8]  
Burgard W, 1998, 1998 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS - PROCEEDINGS, VOLS 1-3, P730, DOI 10.1109/IROS.1998.727279
[9]   A fish perspective: detecting flow features while moving using an artificial lateral line in steady and unsteady flow [J].
Chambers, L. D. ;
Akanyeti, O. ;
Venturelli, R. ;
Jezov, J. ;
Brown, J. ;
Kruusmaa, M. ;
Fiorini, P. ;
Megill, W. M. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2014, 11 (99)
[10]   Estimation of Flow Turbulence Metrics With a Lateral Line Probe and Regression [J].
Chen, Ke ;
Tuhtan, Jeffrey A. ;
Fuentes-Perez, Juan Fran ;
Toming, Gert ;
Musall, Mark ;
Strokina, Nataliya ;
Kamarianen, Joni-Kristian ;
Kruusmaa, Maarja .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2017, 66 (04) :651-660