Acceleration of amyloid fibril formation by carboxyl-terminal truncation of human serum amyloid A

被引:10
|
作者
Tanaka, Masafumi [1 ]
Kawakami, Toru [2 ]
Okino, Nozomi [1 ]
Sasaki, Kaoru [1 ]
Nakanishi, Kiwako [1 ]
Takase, Hiroka [1 ]
Yamada, Toshiyuki [3 ]
Mukai, Takahiro [1 ]
机构
[1] Kobe Pharmaceut Univ, Dept Biophys Chem, Kobe, Hyogo 6588558, Japan
[2] Osaka Univ, Inst Prot Res, Lab Prot Organ Chem, Suita, Osaka 5650871, Japan
[3] Jichi Med Univ, Dept Clin Lab Med, Shimotsuke 3290498, Japan
关键词
Serum amyloid A; Amyloid fibril; AA amyloidosis; Carboxyl-terminal truncation; Native chemical ligation; HIGH-DENSITY-LIPOPROTEIN; HEPARAN-SULFATE; AA AMYLOIDOSIS; PROTEINS; PEPTIDE; SAA; AMYLOIDOGENESIS; INFLAMMATION; AGGREGATION; MECHANISM;
D O I
10.1016/j.abb.2017.12.016
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Human serum amyloid A (SAA) is a precursor protein of AA amyloidosis. Although the full-length SAA is 104 amino acids long, the C-terminal-truncated SAA lacking mainly residues 77-104 is predominantly deposited in AA amyloidosis. Nevertheless, the amyloid fibril formation of such truncated forms of human SAA has never been investigated. In the present study, we examined the effect of C-terminal truncation on amyloid fibril formation of human SAA induced by heparan sulfate (HS). Circular dichroism (CD) measurements demonstrated that the C-terminal truncation induces a reduced a-helical structure of the SAA molecule. HS-induced increases in thioflavin T fluorescence for SAA (1-76) peptide and less significant increases for full-length SAA were observed. CD spectral changes of SAA (1-76) peptide but not full-length SAA were observed when incubated with HS, although the spectrum was not typical for a beta-structure. Fourier transform infrared experiments clearly revealed that SAA (1-76) peptide forms a beta-sheet structure. Transmission electron microscopy revealed that short fibrillar aggregates of SAA (1-76) peptides, which became longer with increasing peptide concentrations, were observed under conditions in which full-length SAA scarcely formed fibrillar aggregates. These results suggested that the C-terminal truncation of human SAA accelerates amyloid fibril formation.
引用
收藏
页码:9 / 15
页数:7
相关论文
共 50 条
  • [41] On the lag phase in amyloid fibril formation
    Arosio, Paolo
    Knowles, Tuomas P. J.
    Linse, Sara
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (12) : 7606 - 7618
  • [42] Inhibition of amyloid beta fibril formation by monomeric human transthyretin
    Garai, Kanchan
    Posey, Ammon E.
    Li, Xinyi
    Buxbaum, Joel N.
    Pappu, Rohit V.
    PROTEIN SCIENCE, 2018, 27 (07) : 1252 - 1261
  • [43] Effects of the carboxyl-terminal fragment of Alzheimer's amyloid precursor protein and amyloid β-peptide on the production of cytokines and nitric oxide in glial cells
    Rah, JC
    Kim, HS
    Kim, SS
    Bach, JH
    Jeong, SJ
    Seo, JH
    Park, CH
    Kim, YS
    Suh, YH
    FASEB JOURNAL, 2001, 15 (06): : 1463 - +
  • [44] Amyloid fibril formation is suppressed in microgravity
    Matsushita, Hiroaki
    Isoguchi, Aito
    Okada, Masamitsu
    Masuda, Teruaki
    Misumi, Yohei
    Ichiki, Yuko
    Ueda, Mitsuharu
    Ando, Yukio
    BIOCHEMISTRY AND BIOPHYSICS REPORTS, 2021, 25
  • [45] Mechanisms of amyloid fibril formation by proteins
    Kumar, Santosh
    Udgaonkar, Jayant B.
    CURRENT SCIENCE, 2010, 98 (05): : 639 - 656
  • [46] N-terminal truncation of peptide effects on human serum albumin and beta amyloid peptide interaction
    Zare, Malihe Sarvari
    Bozorgmehr, Mohammad Reza
    Mohseni, Sharareh
    Beyramabadi, S. Ali
    JOURNAL OF THE INDIAN CHEMICAL SOCIETY, 2023, 100 (06)
  • [47] Nucleobindin 1 Caps Human Islet Amyloid Polypeptide Protofibrils to Prevent Amyloid Fibril Formation
    Gupta, Ruchi
    Kapoor, Neeraj
    Raleigh, Daniel P.
    Sakmar, Thomas P.
    JOURNAL OF MOLECULAR BIOLOGY, 2012, 421 (2-3) : 378 - 389
  • [48] APOLIPOPROTEIN-E CARBOXYL-TERMINAL FRAGMENTS ARE COMPLEXED TO AMYLOID-A AND AMYLOID-L - IMPLICATIONS FOR AMYLOIDOGENESIS AND ALZHEIMERS-DISEASE
    CASTANO, EM
    PRELLI, F
    PRAS, M
    FRANGIONE, B
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (29) : 17610 - 17615
  • [49] Effect of Surfaces on Amyloid Fibril Formation
    Moores, Bradley
    Drolle, Elizabeth
    Attwood, Simon J.
    Simons, Janet
    Leonenko, Zoya
    PLOS ONE, 2011, 6 (10):
  • [50] Elucidating the kinetics of β-amyloid fibril formation
    Edwin, NJ
    Bantchev, GB
    Russo, PS
    Hammer, RP
    McCarley, RL
    NEW POLYMERIC MATERIALS, 2005, 916 : 106 - 118