Phonon Magnetochiral Effect

被引:67
|
作者
Nomura, T. [1 ]
Zhang, X-X [2 ,3 ]
Zherlitsyn, S. [1 ]
Wosnitza, J. [1 ,4 ]
Tokura, Y. [2 ,5 ]
Nagaosa, N. [2 ,5 ]
Seki, S. [2 ,5 ,6 ]
机构
[1] Helmholtz Zentrum Dresden Rossendorf, Hochfeld Magnetlab Dresden HLD EMFL, D-01328 Dresden, Germany
[2] Univ Tokyo, Dept Appl Phys, Tokyo 1138656, Japan
[3] Univ British Columbia, Quantum Matter Inst, Vancouver, BC V6T 1Z4, Canada
[4] Tech Univ Dresden, Inst Festkorper & Mat Phys, D-01062 Dresden, Germany
[5] RIKEN, CEMS, Wako, Saitama 3510198, Japan
[6] Univ Tokyo, Inst Engn Innovat, Tokyo 1138656, Japan
关键词
SKYRMIONS; STATE; SOUND;
D O I
10.1103/PhysRevLett.122.145901
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The magnetochiral effect (MCE) of phonons, a nonreciprocal acoustic propagation arising due to symmetry principles, is demonstrated in the chiral-lattice ferrimagnet Cu2OSeO3. Our high-resolution ultrasound experiments reveal that the sound velocity differs for parallel and antiparallel propagation with respect to the external magnetic field. The sign of the nonreciprocity depends on the chirality of the crystal in accordance with the selection rule of the MCE. The nonreciprocity is enhanced below the magnetic ordering temperature and at higher ultrasound frequencies, which is quantitatively explained by a proposed magnon-phonon hybridization mechanism.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Photon-phonon quantum cloning in optomechanical system
    Mu, Qingxia
    Wang, Ting
    Zhang, Wen-Zhao
    PHYSICA SCRIPTA, 2024, 99 (01)
  • [42] The electron- acoustic phonon interaction in monolayer graphene
    Hou, S. L.
    Hou, J. H.
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2020, 14 (1-2): : 69 - 72
  • [43] Spinon-phonon interaction in algebraic spin liquids
    Serbyn, Maksym
    Lee, Patrick A.
    PHYSICAL REVIEW B, 2013, 87 (17):
  • [44] Enhancement of photon-phonon entanglement transfer in optomechanics
    Amazioug, M.
    Maroufi, B.
    Daoud, M.
    QUANTUM INFORMATION PROCESSING, 2020, 19 (05)
  • [45] Stochastic Approach to Phonon-Assisted Optical Absorption
    Zacharias, Marios
    Patrick, Christopher E.
    Giustino, Feliciano
    PHYSICAL REVIEW LETTERS, 2015, 115 (17)
  • [46] Thermoelasticity and anomalies in the pressure dependence of phonon velocities in niobium
    Zou, Yongtao
    Li, Ying
    Chen, Haiyan
    Welch, David
    Zhao, Yusheng
    Li, Baosheng
    APPLIED PHYSICS LETTERS, 2018, 112 (01)
  • [47] Phonon Landau Quantization and Enhanced Lifetime in Deformed Graphene
    Li, Jian-Gao
    Guo, Di
    Li, Yun-Mei
    Chang, Kai
    Zhang, Dong-Bo
    NANO LETTERS, 2024, 24 (38) : 11847 - 11852
  • [48] Phonon spectrum, mechanical and thermophysical properties of thorium carbide
    Perez Daroca, D.
    Jaroszewicz, S.
    Llois, A. M.
    Mosca, H. O.
    JOURNAL OF NUCLEAR MATERIALS, 2013, 437 (1-3) : 135 - 138
  • [49] Phonon-mediated superconductivity in doped monolayer materials
    Thingstad, Even
    Kamra, Akashdeep
    Wells, Justin W.
    Sudbo, Asle
    PHYSICAL REVIEW B, 2020, 101 (21)
  • [50] Nano-acoustic resonator with ultralong phonon lifetime
    MacCabe, Gregory S.
    Ren, Hengjiang
    Luo, Jie
    Cohen, Justin D.
    Zhou, Hengyun
    Sipahigil, Alp
    Mirhosseini, Mohammad
    Painter, Oskar
    SCIENCE, 2020, 370 (6518) : 840 - +