Phonon Magnetochiral Effect

被引:67
|
作者
Nomura, T. [1 ]
Zhang, X-X [2 ,3 ]
Zherlitsyn, S. [1 ]
Wosnitza, J. [1 ,4 ]
Tokura, Y. [2 ,5 ]
Nagaosa, N. [2 ,5 ]
Seki, S. [2 ,5 ,6 ]
机构
[1] Helmholtz Zentrum Dresden Rossendorf, Hochfeld Magnetlab Dresden HLD EMFL, D-01328 Dresden, Germany
[2] Univ Tokyo, Dept Appl Phys, Tokyo 1138656, Japan
[3] Univ British Columbia, Quantum Matter Inst, Vancouver, BC V6T 1Z4, Canada
[4] Tech Univ Dresden, Inst Festkorper & Mat Phys, D-01062 Dresden, Germany
[5] RIKEN, CEMS, Wako, Saitama 3510198, Japan
[6] Univ Tokyo, Inst Engn Innovat, Tokyo 1138656, Japan
关键词
SKYRMIONS; STATE; SOUND;
D O I
10.1103/PhysRevLett.122.145901
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The magnetochiral effect (MCE) of phonons, a nonreciprocal acoustic propagation arising due to symmetry principles, is demonstrated in the chiral-lattice ferrimagnet Cu2OSeO3. Our high-resolution ultrasound experiments reveal that the sound velocity differs for parallel and antiparallel propagation with respect to the external magnetic field. The sign of the nonreciprocity depends on the chirality of the crystal in accordance with the selection rule of the MCE. The nonreciprocity is enhanced below the magnetic ordering temperature and at higher ultrasound frequencies, which is quantitatively explained by a proposed magnon-phonon hybridization mechanism.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Enhanced electrical magnetochiral effect by spin-hedgehog lattice structural transition
    Kitaori, A.
    Kanazawa, N.
    Ishizuka, H.
    Yokouchi, T.
    Nagaosa, N.
    Tokura, Y.
    PHYSICAL REVIEW B, 2021, 103 (22)
  • [2] Chirality coupling in topological magnetic textures with multiple magnetochiral parameters
    Volkov, Oleksii M.
    Wolf, Daniel
    Pylypovskyi, Oleksandr V.
    Kakay, Attila
    Sheka, Denis D.
    Buechner, Bernd
    Fassbender, Juergen
    Lubk, Axel
    Makarov, Denys
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [3] Magnetochiral nonreciprocity of volume spin wave propagation in chiral-lattice ferromagnets
    Seki, S.
    Okamura, Y.
    Kondou, K.
    Shibata, K.
    Kubota, M.
    Takagi, R.
    Kagawa, F.
    Kawasaki, M.
    Tatara, G.
    Otani, Y.
    Tokura, Y.
    PHYSICAL REVIEW B, 2016, 93 (23)
  • [4] Single phonon source based on a giant polariton nonlinear effect
    Cai, Kang
    Pan, Zi-Wen
    Wang, Rui-Xia
    Ruan, Dong
    Yin, Zhang-Qi
    Long, Gui-Lu
    OPTICS LETTERS, 2018, 43 (05) : 1163 - 1166
  • [5] Study of the thermodynamic properties of CeO2 from ab initio calculations: The effect of phonon-phonon interaction
    Niu, Zhen-Wei
    Zeng, Zhao-Yi
    Hu, Cui-E
    Cai, Ling-Cang
    Chen, Xiang-Rong
    JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (01)
  • [6] Model for topological phononics and phonon diode
    Liu, Yizhou
    Xu, Yong
    Zhang, Shou-Cheng
    Duan, Wenhui
    PHYSICAL REVIEW B, 2017, 96 (06)
  • [7] EFFECT OF TEMPERATURE AND FREQUENCY ON ACOUSTIC ATTENUATION OF LONGITUDINAL AND SHEAR WAVES DUE TO PHONON-PHONON INTERACTIONS IN SOME METAL OXIDES
    Bagade, S. H.
    Saudagar, P. A.
    JOURNAL OF PHYSICAL STUDIES, 2025, 29 (01):
  • [8] Absence of Kondo effect in CeNiGe3 revealed by coherent phonon dynamics
    Wang, Longyu
    Han, Yadong
    Yu, Junhong
    Xu, Fang
    Zhang, Hang
    Gong, Chunsheng
    Lei, Hechang
    Hu, Jianbo
    PHYSICAL REVIEW B, 2021, 104 (20)
  • [9] Phonon-polariton entrapment in homogenous surface phonon cavities
    Yudistira, Didit
    Boes, Andreas
    Dumas, Benjamin
    Rezk, Amgad R.
    Yousefi, Morteza
    Djafari-Rouhani, Bahram
    Yeo, Leslie Y.
    Mitchell, Arnan
    ANNALEN DER PHYSIK, 2016, 528 (05) : 365 - 372
  • [10] Role of the phonon confinement effect and boundary scattering in reducing the thermal conductivity of argon nanowire
    Tretiakov, Konstantin, V
    Hyzorek, Krzysztof
    JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (05)