Protein folding kinetics and thermodynamics from atomistic simulation

被引:233
作者
Piana, Stefano [1 ]
Lindorff-Larsen, Kresten [1 ]
Shaw, David E. [1 ,2 ]
机构
[1] DE Shaw Res, New York, NY 10036 USA
[2] Columbia Univ, Ctr Computat Biol & Bioinformat, New York, NY 10032 USA
关键词
Amber ff99SB*-ILDN; enthalpy; heat capacity; pre-exponential factor; transition path time; VILLIN HEADPIECE SUBDOMAIN; MOLECULAR-DYNAMICS SIMULATIONS; TRANSITION-STATE; FORCE-FIELDS; SIDE-CHAIN;
D O I
10.1073/pnas.1201811109
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Advances in simulation techniques and computing hardware have created a substantial overlap between the timescales accessible to atomic-level simulations and those on which the fastest-folding proteins fold. Here we demonstrate, using simulations of four variants of the human villin headpiece, how simulations of spontaneous folding and unfolding can provide direct access to thermodynamic and kinetic quantities such as folding rates, free energies, folding enthalpies, heat capacities, Phi-values, and temperature-jump relaxation profiles. The quantitative comparison of simulation results with various forms of experimental data probing different aspects of the folding process can facilitate robust assessment of the accuracy of the calculations while providing a detailed structural interpretation for the experimental observations. In the example studied here, the analysis of folding rates, F-values, and folding pathways provides support for the notion that a norleucine double mutant of villin folds five times faster than the wild-type sequence, but following a slightly different pathway. This work showcases how computer simulation has now developed into a mature tool for the quantitative computational study of protein folding and dynamics that can provide a valuable complement to experimental techniques.
引用
收藏
页码:17845 / 17850
页数:6
相关论文
共 47 条