Error bounds for approximation with neural networks

被引:44
作者
Burger, M [1 ]
Neubauer, A [1 ]
机构
[1] Johannes Kepler Univ Linz, Inst Ind Math, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
neural networks; error bounds; nonlinear function approximation;
D O I
10.1006/jath.2001.3613
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove convergence rates for the problem of approximating functions f by neural networks and similar constructions. We show that the rates are the better the smoother the activation functions are, provided that f satisfies an integral representation. We give error bounds not only in Hilbert spaces but also in general Sobolev spaces W-m,W-r(Omega). Finally, we apply our results to a class of perceptrons and present a sufficient smoothness condition on f guaranteeing the integral representation, (C) 2001 Academic Press.
引用
收藏
页码:235 / 250
页数:16
相关论文
共 13 条
[1]   UNIVERSAL APPROXIMATION BOUNDS FOR SUPERPOSITIONS OF A SIGMOIDAL FUNCTION [J].
BARRON, AR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (03) :930-945
[2]  
Bishop C. M., 1995, NEURAL NETWORKS PATT
[3]  
BURGER M, 2000, IN PRESS ADV COMPUT
[4]  
DeVore R.A., 1997, Annals of Numerical Mathematics, V4, P261
[5]  
Engl H., 1996, Mathematics and Its Applications, V375, DOI DOI 10.1007/978-94-009-1740-8
[6]   MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS [J].
HORNIK, K ;
STINCHCOMBE, M ;
WHITE, H .
NEURAL NETWORKS, 1989, 2 (05) :359-366
[7]  
Mhaskar H.N., 1993, Adv. Comput. Math., V1, P61
[8]   DEGREE OF APPROXIMATION BY NEURAL AND TRANSLATION NETWORKS WITH A SINGLE HIDDEN LAYER [J].
MHASKAR, HN ;
MICCHELLI, CA .
ADVANCES IN APPLIED MATHEMATICS, 1995, 16 (02) :151-183
[9]  
Niyogi P, 1998, ADV COMPUT MATH, V10, P51
[10]   Approximation by ridge functions and neural networks [J].
Petrushev, PP .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 30 (01) :155-189