Moving towards clinical trials for mitochondrial diseases

被引:41
作者
Pitceathly, Robert D. S. [1 ,2 ]
Keshavan, Nandaki [3 ,4 ]
Rahman, Joyeeta [3 ]
Rahman, Shamima [3 ,4 ]
机构
[1] UCL Queen Sq Inst Neurol, Dept Neuromuscular Dis, London, England
[2] Natl Hosp Neurol & Neurosurg, London, England
[3] UCL Great Ormond St Inst Child Hlth, Mitochondrial Res Grp, London, England
[4] Great Ormond St Hosp Children NHS Fdn Trust, Metabol Unit, London, England
基金
英国医学研究理事会;
关键词
antioxidants; clinical trial; gene therapy; mitochondrial biogenesis; mitophagy; nucleosides; primary mitochondrial disease; treatment; GENE-REPLACEMENT THERAPY; MOUSE MODEL; NATURAL-HISTORY; BARTH SYNDROME; OPEN-LABEL; LIFE-SPAN; DNA; DEFICIENCY; MUTATIONS; DELIVERY;
D O I
10.1002/jimd.12281
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Primary mitochondrial diseases represent some of the most common and severe inherited metabolic disorders, affecting similar to 1 in 4,300 live births. The clinical and molecular diversity typified by mitochondrial diseases has contributed to the lack of licensed disease-modifying therapies available. Management for the majority of patients is primarily supportive. The failure of clinical trials in mitochondrial diseases partly relates to the inefficacy of the compounds studied. However, it is also likely to be a consequence of the significant challenges faced by clinicians and researchers when designing trials for these disorders, which have historically been hampered by a lack of natural history data, biomarkers and outcome measures to detect a treatment effect. Encouragingly, over the past decade there have been significant advances in therapy development for mitochondrial diseases, with many small molecules now transitioning from preclinical to early phase human interventional studies. In this review, we present the treatments and management strategies currently available to people with mitochondrial disease. We evaluate the challenges and potential solutions to trial design and highlight the emerging pharmacological and genetic strategies that are moving from the laboratory to clinical trials for this group of disorders.
引用
收藏
页码:22 / 41
页数:20
相关论文
共 145 条
  • [1] Clinical syndromes associated with Coenzyme Q10 deficiency
    Alcazar-Fabra, Maria
    Trevisson, Eva
    Brea-Calvo, Gloria
    [J]. MITOCHONDRIAL DISEASES, 2018, 62 (03): : 377 - 398
  • [2] [Anonymous], 2019, PROV UPD PHAS 3 TRIA
  • [3] DEPLETION OF MUSCLE MITOCHONDRIAL-DNA IN AIDS PATIENTS WITH ZIDOVUDINE-INDUCED MYOPATHY
    ARNAUDO, E
    DALAKAS, M
    SHANSKE, S
    MORAES, CT
    DIMAURO, S
    SCHON, EA
    [J]. LANCET, 1991, 337 (8740) : 508 - 510
  • [4] ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption
    Ashraf, Shazia
    Gee, Heon Yung
    Woerner, Stephanie
    Xie, Letian X.
    Vega-Warner, Virginia
    Lovric, Svjetlana
    Fang, Humphrey
    Song, Xuewen
    Cattran, Daniel C.
    Avila-Casado, Carmen
    Paterson, Andrew D.
    Nitschke, Patrick
    Bole-Feysot, Christine
    Cochat, Pierre
    Esteve-Rudd, Julian
    Haberberger, Birgit
    Allen, Susan J.
    Zhou, Weibin
    Airik, Rannar
    Otto, Edgar A.
    Barua, Moumita
    Al-Hamed, Mohamed H.
    Kari, Jameela A.
    Evans, Jonathan
    Bierzynska, Agnieszka
    Saleem, Moin A.
    Boeckenhauer, Detlef
    Kleta, Robert
    El Desoky, Sherif
    Hacihamdioglu, Duygu O.
    Gok, Faysal
    Washburn, Joseph
    Wiggins, Roger C.
    Choi, Murim
    Lifton, Richard P.
    Levy, Shawn
    Han, Zhe
    Salviati, Leonardo
    Prokisch, Holger
    Williams, David S.
    Pollak, Martin
    Clarke, Catherine F.
    Pei, York
    Antignac, Corinne
    Hildebrandt, Friedhelm
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 2013, 123 (12) : 5179 - 5189
  • [5] The pathways of mitophagy for quality control and clearance of mitochondria
    Ashrafi, G.
    Schwarz, T. L.
    [J]. CELL DEATH AND DIFFERENTIATION, 2013, 20 (01) : 31 - 42
  • [6] Coenzyme Q10 deficiencies: pathways in yeast and humans
    Awad, Agape M.
    Bradley, Michelle C.
    Fernandez-del-Rio, Lucia
    Nag, Anish
    Tsui, Hui S.
    Clarke, Catherine F.
    [J]. MITOCHONDRIAL DISEASES, 2018, 62 (03): : 361 - 376
  • [7] MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation
    Bacman, Sandra R.
    Kauppila, Johanna H. K.
    Pereira, Claudia, V
    Nissanka, Nadee
    Miranda, Maria
    Pinto, Milena
    Williams, Sion L.
    Larsson, Nils-Goeran
    Stewart, James B.
    Moraes, Carlos T.
    [J]. NATURE MEDICINE, 2018, 24 (11) : 1696 - +
  • [8] Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs
    Bacman, Sandra R.
    Williams, Sion L.
    Pinto, Milena
    Peralta, Susana
    Moraes, Carlos T.
    [J]. NATURE MEDICINE, 2013, 19 (09) : 1111 - 1113
  • [9] Disorders of riboflavin metabolism
    Balasubramaniam, Shanti
    Christodoulou, John
    Rahman, Shamima
    [J]. JOURNAL OF INHERITED METABOLIC DISEASE, 2019, 42 (04) : 608 - 619
  • [10] Mitochondrial diseases in North America: An analysis of the NAMDC Registry
    Barca, Emanuele
    Long, Yuelin
    Cooley, Victoria
    Schoenaker, Robert
    Emmanuele, Valentina
    DiMauro, Salvatore
    Cohen, Bruce H.
    Karaa, Amel
    Vladutiu, Georgirene D.
    Haas, Richard
    Van Hove, Johan L. K.
    Scaglia, Fernando
    Parikh, Sumit
    Bedoyan, Jirair K.
    DeBrosse, Susanne D.
    Gavrilova, Ralitza H.
    Saneto, Russell P.
    Enns, Gregory M.
    Stacpoole, Peter W.
    Ganesh, Jaya
    Larson, Austin
    Zolkipli-Cunningham, Zarazuela
    Falk, Marni J.
    Goldstein, Amy C.
    Tarnopolsky, Mark
    Gropman, Andrea
    Camp, Kathryn
    Krotoski, Danuta
    Engelstad, Kristin
    Rosales, Xiomara Q.
    Kriger, Joshua
    Grier, Johnston
    Buchsbaum, Richard
    Thompson, John L. P.
    Hirano, Michio
    [J]. NEUROLOGY-GENETICS, 2020, 6 (02)