Lp-asymptotic stability analysis of a 1D wave equation with a nonlinear damping

被引:14
作者
Chitour, Yacine [1 ]
Marx, Swann [2 ,3 ]
Prieur, Christophe [4 ]
机构
[1] Univ Paris Sud, Cent Supelec, CNRS, Lab Signaux & Syst L2S, 3 Rue Joliot Curie, F-91192 Gif Sur Yvette, France
[2] Ecole Cent Nantes, LS2N, F-44000 Nantes, France
[3] CNRS, UMR 6004, F-44000 Nantes, France
[4] Univ Grenoble Alpes, Gipsa Lab, Grenoble INP, CNRS, F-38000 Grenoble, France
关键词
INDIRECT BOUNDARY STABILIZATION; DECAY;
D O I
10.1016/j.jde.2020.06.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the asymptotic stability analysis of a one dimensional wave equation with Dirichlet boundary conditions subject to a nonlinear distributed damping within an L-p functional frame- work, rho is an element of [2, infinity]. Some well-posedness results are provided together with exponential decay to zero of trajectories, with an estimation of the decay rate. The well-posedness results are proved by considering an appropriate energy functional in the appropriate functional spaces and introduced by Haraux in [A. Haraux, Int. J. Math. Modelling Num. Opt., 2009]. The asymptotic behavior analysis is based on an attractivity result of a trajectory of an infinite-dimensional linear time-varying system with a special structure, which relies on the introduction of a suitable Lyapunov functional. Note that some of the results of this paper apply for a large class of nonmonotone dampings. (c) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:8107 / 8131
页数:25
相关论文
共 30 条
  • [1] Indirect boundary stabilization of weakly coupled systems
    Alabau, F
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (11): : 1015 - 1020
  • [2] Indirect boundary stabilization of weakly coupled hyperbolic systems
    Alabau-Boussouira, F
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 41 (02) : 511 - 541
  • [3] On Some Recent Advances on Stabilization for Hyperbolic Equations
    Alabau-Boussouira, Fatiha
    [J]. CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS: CETRARO, ITALY 2010, 2012, 2048 : 1 - 100
  • [4] Decay of approximate solutions for the damped semilinear wave equation on a bounded id domain
    Amadori, Debora
    Aqel, Fatima Al-Zahra'
    Dal Santo, Edda
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 132 : 166 - 206
  • [5] [Anonymous], 1997, AM MATH SOC
  • [6] [Anonymous], 1999, EVOLUTION SEMIGROUPS
  • [7] [Anonymous], 1992, TRANSLATIONS MATH MO
  • [8] Bastin G, 2016, PROG NONLINEAR DIFFE, V88, P1, DOI 10.1007/978-3-319-32062-5
  • [9] Bergh J., 2012, INTERPOLATION SPACES, V223
  • [10] Brezis H., 2010, FUNCTIONAL ANAL