ASYMPTOTICS OF BLOWUP SOLUTIONS FOR THE AGGREGATION EQUATION

被引:13
作者
Huang, Yanghong [1 ]
Bertozzi, Andrea [1 ]
机构
[1] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2012年 / 17卷 / 04期
基金
美国国家科学基金会;
关键词
Aggregation equation; blowup; asymptotic behavior; self-similar solutions; MODEL; BEHAVIOR; LIMIT; LONG;
D O I
10.3934/dcdsb.2012.17.1309
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the asymptotic behavior of radially symmetric solutions of the aggregation equation ut = del . (u del K * u) in R-n, for homogeneous potentials K(x) = vertical bar x vertical bar(gamma), gamma > 0. For gamma > 2, the aggregation happens in infinite time and exhibits a concentration of mass along a collapsing delta-ring. We develop an asymptotic theory for the approach to this singular solution. For gamma < 2, the solution blows up in fi nite time and we present careful numerics of second type similarity solutions for all gamma in this range, including additional asymptotic behaviors in the limits gamma -> 0(+) and gamma -> 2(-).
引用
收藏
页码:1309 / 1331
页数:23
相关论文
共 33 条
[21]  
Huang Y., 2010, ANOMALOUS EXPONENTS
[22]   SELF-SIMILAR BLOWUP SOLUTIONS TO AN AGGREGATION EQUATION IN Rn [J].
Huang, Yanghong ;
Bertozzi, Andrea L. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2010, 70 (07) :2582-2603
[23]   INITIATION OF SLIME MOLD AGGREGATION VIEWED AS AN INSTABILITY [J].
KELLER, EF ;
SEGEL, LA .
JOURNAL OF THEORETICAL BIOLOGY, 1970, 26 (03) :399-&
[24]   Local and global existence for an aggregation equation [J].
Laurent, Thomas .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (10-12) :1941-1964
[25]   Long-time asymptotics of kinetic models of granular flows [J].
Li, HL ;
Toscani, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2004, 172 (03) :407-428
[26]   Mutual interactions, potentials, and individual distance in a social aggregation [J].
Mogilner, A ;
Edelstein-Keshet, L ;
Bent, L ;
Spiros, A .
JOURNAL OF MATHEMATICAL BIOLOGY, 2003, 47 (04) :353-389
[27]   A non-local model for a swarm [J].
Mogilner, A ;
Edelstein-Keshet, L .
JOURNAL OF MATHEMATICAL BIOLOGY, 1999, 38 (06) :534-570
[28]   An interacting particle system modelling aggregation behavior:: from individuals to populations [J].
Morale, D ;
Capasso, V ;
Oelschläger, K .
JOURNAL OF MATHEMATICAL BIOLOGY, 2005, 50 (01) :49-66
[29]   A model for rolling swarms of locusts [J].
Topaz, C. M. ;
Bernoff, A. J. ;
Logan, S. ;
Toolson, W. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2008, 157 (1) :93-109
[30]   A nonlocal continuum model for biological aggregation [J].
Topaz, Chad M. ;
Bertozzi, Andrea L. ;
Lewis, Mark A. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2006, 68 (07) :1601-1623