ASYMPTOTICS OF BLOWUP SOLUTIONS FOR THE AGGREGATION EQUATION

被引:13
作者
Huang, Yanghong [1 ]
Bertozzi, Andrea [1 ]
机构
[1] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2012年 / 17卷 / 04期
基金
美国国家科学基金会;
关键词
Aggregation equation; blowup; asymptotic behavior; self-similar solutions; MODEL; BEHAVIOR; LIMIT; LONG;
D O I
10.3934/dcdsb.2012.17.1309
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the asymptotic behavior of radially symmetric solutions of the aggregation equation ut = del . (u del K * u) in R-n, for homogeneous potentials K(x) = vertical bar x vertical bar(gamma), gamma > 0. For gamma > 2, the aggregation happens in infinite time and exhibits a concentration of mass along a collapsing delta-ring. We develop an asymptotic theory for the approach to this singular solution. For gamma < 2, the solution blows up in fi nite time and we present careful numerics of second type similarity solutions for all gamma in this range, including additional asymptotic behaviors in the limits gamma -> 0(+) and gamma -> 2(-).
引用
收藏
页码:1309 / 1331
页数:23
相关论文
共 33 条
[1]  
Ambrosio L., 2006, Gradient Flows in Metric Spaces and in the Space of Probability Measures
[2]  
ARONSON DG, 1995, J NONLINEAR SCI, V5, P29
[3]  
Benedetto D, 1997, ESAIM-MATH MODEL NUM, V31, P615
[4]  
Bertozzi A.L., 2012, SIAM J MATH IN PRESS
[5]   Finite-time blow-up of solutions of an aggregation equation in Rn [J].
Bertozzi, Andrea L. ;
Laurent, Thomas .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 274 (03) :717-735
[6]   Lp Theory for the Multidimensional Aggregation Equation [J].
Bertozzi, Andrea L. ;
Laurent, Thomas ;
Rosado, Jesus .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (01) :45-83
[7]  
Bertozzi AL, 2010, COMMUN MATH SCI, V8, P45
[8]   Blow-up in multidimensional aggregation equations with mildly singular interaction kernels [J].
Bertozzi, Andrea L. ;
Carrillo, Jose A. ;
Laurent, Thomas .
NONLINEARITY, 2009, 22 (03) :683-710
[9]   An integro-differential equation arising as a limit of individual cell-based models [J].
Bodnar, M ;
Velazquez, JJL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 222 (02) :341-380
[10]   On an aggregation model with long and short range interactions [J].
Burger, Martin ;
Capasso, Vincenzo ;
Morale, Daniela .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2007, 8 (03) :939-958