Holderian invariance principle for linear processes

被引:0
作者
Juodis, Mindaugas [1 ,2 ]
Rackauskas, Alfredas [1 ,2 ]
Suquet, Charles [3 ]
机构
[1] Vilnius Univ, Dept Math & Informat, LT-2006 Vilnius, Lithuania
[2] Inst Math & Informat, LT-08663 Vilnius, Lithuania
[3] Univ Lille 1, Lab P Painleve, CNRS, UMR 8524, F-59655 Villeneuve Dascq, France
来源
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS | 2009年 / 5卷
关键词
fractional Brownian motion; Holder space; invariance principle; short memory; long memory; linear process; Wiener measure;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (xi(n))(n >= 1) be the polygonal partial sums process built on the linear processes X(n) = Sigma(i >= 0) a(i)is an element of(n-i), where (is an element of(i))(i is an element of Z) are i.i.d., centered and square integrable random variables with Sigma(i >= 0) a(i)(2) <infinity. We investigate functional central limit theorem for xi(n) in the Holder spaces H(alpha)(o)[0, 1] of functions x : [0, 1] -> R such that vertical bar x(t + h) - x(t)vertical bar = o(h(alpha)) uniformly in t. When Sigma(i >= 0) vertical bar a(i)vertical bar < infinity (short memory case), we show that n(-1/2)xi(n) converges weakly in H(alpha)(o)[0, 1] to some Brownian motion under the optimal assumption that P(vertical bar epsilon(0)vertical bar) >= t) = o(t(-p)), where 1/p = 1/2 - alpha. This extends the Lamperti invariance principle for i.i.d. X(n)'s. When a(i) = l(i)i(-beta), 1/2 < beta < 1, with l positive, increasing and slowly varying, (X(n))(n >= 1) has long memory. The limiting process for xi(n) is then the fractional Brownian motion W(H) with Hurst index H = 3/2 - beta and the normalizing constants are b(n) = c(beta)n(H)l(n). For 0 < alpha < H - 1/2, the weak convergence of b(n)(-1)xi(n) to W(H) in H(alpha)(o)[0, 1] is obtained under the mild assumption that Ec(0)(2) < infinity. For H -1/2 < alpha < H, the same convergence is obtained under P(vertical bar c(0)vertical bar) >= t) = o(t(-p)), where 1/p = H - alpha.
引用
收藏
页码:47 / 64
页数:18
相关论文
共 50 条
  • [41] The spectral shift function and the invariance principle
    Pushnitski, A
    JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 183 (02) : 269 - 320
  • [42] The invariance principle for associated random fields
    Kim, TS
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1996, 26 (04) : 1443 - 1454
  • [43] The invariance principle in disturbance rejection control
    Li X.-Y.
    Gao Z.-Q.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2020, 37 (02): : 236 - 244
  • [44] The invariance principle for p-θ chain
    Hu, Di He
    Xiao, Zheng Yan
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (01) : 41 - 56
  • [45] Invariance principle for the random conductance model
    S. Andres
    M. T. Barlow
    J.-D. Deuschel
    B. M. Hambly
    Probability Theory and Related Fields, 2013, 156 : 535 - 580
  • [46] The invariance principle in baseball: new evidence
    Rockerbie, Duane W.
    APPLIED ECONOMICS, 2018, 50 (23) : 2613 - 2621
  • [47] An Invariance Principle to Ferrari–Spohn Diffusions
    Dmitry Ioffe
    Senya Shlosman
    Yvan Velenik
    Communications in Mathematical Physics, 2015, 336 : 905 - 932
  • [48] Invariance principle for the random conductance model
    Andres, S.
    Barlow, M. T.
    Deuschel, J. -D.
    Hambly, B. M.
    PROBABILITY THEORY AND RELATED FIELDS, 2013, 156 (3-4) : 535 - 580
  • [49] Invariance principle via orthomartingale approximation
    Giraudo, Davide
    STOCHASTICS AND DYNAMICS, 2018, 18 (06)
  • [50] An invariance principle for nonlinear switched systems
    Bacciotti, A
    Mazzi, L
    SYSTEMS & CONTROL LETTERS, 2005, 54 (11) : 1109 - 1119